Результаты исследований: Материалы конференций › материалы › Рецензирование
In this paper we present a new approach to proving upper bounds for the maximum 2-satisfiability problem (MAX-2-SAT). We present a new 2 K/5.5-time algorithm for MAX-2-SAT, where K is the number of clauses in an input formula. We also obtain a 2N/6 bound, where N is the number of variables in an input formula, for a particular case of MAX-2-SAT, where each variable appears in at most three 2-clauses. This immediately implies a 2N/6 bound, where N is the number of vertices in an input graph, for the independent set problem on 3-regular graphs. The key point of our improvement is a combined complexity measure for estimating the running time of an algorithm. By using a new complexity measure we are able to provide a much simpler proof of new upper bounds for MAX-2-SAT than proofs of previously known bounds.
Язык оригинала | английский |
---|---|
Страницы | 11-17 |
Число страниц | 7 |
Состояние | Опубликовано - 28 фев 2006 |
Событие | Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms - Miami, FL, Соединенные Штаты Америки Продолжительность: 22 янв 2006 → 24 янв 2006 |
конференция | Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms |
---|---|
Страна/Tерритория | Соединенные Штаты Америки |
Город | Miami, FL |
Период | 22/01/06 → 24/01/06 |
ID: 49824919