In this paper we present a new approach to proving upper bounds for the maximum 2-satisfiability problem (MAX-2-SAT). We present a new 2 K/5.5-time algorithm for MAX-2-SAT, where K is the number of clauses in an input formula. We also obtain a 2N/6 bound, where N is the number of variables in an input formula, for a particular case of MAX-2-SAT, where each variable appears in at most three 2-clauses. This immediately implies a 2N/6 bound, where N is the number of vertices in an input graph, for the independent set problem on 3-regular graphs. The key point of our improvement is a combined complexity measure for estimating the running time of an algorithm. By using a new complexity measure we are able to provide a much simpler proof of new upper bounds for MAX-2-SAT than proofs of previously known bounds.

Язык оригиналаанглийский
Страницы11-17
Число страниц7
СостояниеОпубликовано - 28 фев 2006
СобытиеSeventeenth Annual ACM-SIAM Symposium on Discrete Algorithms - Miami, FL, Соединенные Штаты Америки
Продолжительность: 22 янв 200624 янв 2006

конференция

конференцияSeventeenth Annual ACM-SIAM Symposium on Discrete Algorithms
Страна/TерриторияСоединенные Штаты Америки
ГородMiami, FL
Период22/01/0624/01/06

    Предметные области Scopus

  • Программный продукт
  • Математика (все)

ID: 49824919