DOI

In this paper, we consider the embedding of a complete d-uniform geometric hypergraph with n vertices in general position in Rd, where each hyperedge is represented as a (d−1)-simplex, and a pair of hyperedges is defined to cross if they are vertex-disjoint and contain a common point in the relative interiors of the simplices corresponding to them. As a corollary of the Van Kampen–Flores Theorem, it can be seen that such a hypergraph contains Ω(2dd)n2d crossing pairs of hyperedges. Using Gale Transform and Ham Sandwich Theorem, we improve this lower bound to Ω(2dlogdd)n2d.

Язык оригиналаанглийский
Страницы (с-по)11-15
Число страниц5
ЖурналDiscrete Applied Mathematics
Том209
DOI
СостояниеОпубликовано - 20 авг 2016

    Предметные области Scopus

  • Дискретная математика и комбинаторика
  • Прикладная математика

ID: 49849078