Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
In this paper, we consider the embedding of a complete d-uniform geometric hypergraph with n vertices in general position in Rd, where each hyperedge is represented as a (d−1)-simplex, and a pair of hyperedges is defined to cross if they are vertex-disjoint and contain a common point in the relative interiors of the simplices corresponding to them. As a corollary of the Van Kampen–Flores Theorem, it can be seen that such a hypergraph contains Ω(2dd)n2d crossing pairs of hyperedges. Using Gale Transform and Ham Sandwich Theorem, we improve this lower bound to Ω(2dlogdd)n2d.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 11-15 |
Число страниц | 5 |
Журнал | Discrete Applied Mathematics |
Том | 209 |
DOI | |
Состояние | Опубликовано - 20 авг 2016 |
ID: 49849078