Standard

A krull-schmidt theorem for artinian modules over local rings. / Pimenov, K. I.

в: Journal of Mathematical Sciences, Том 112, № 4, 01.01.2002, стр. 4407-4409.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Pimenov, KI 2002, 'A krull-schmidt theorem for artinian modules over local rings', Journal of Mathematical Sciences, Том. 112, № 4, стр. 4407-4409. https://doi.org/10.1023/A:1020363507415

APA

Vancouver

Author

Pimenov, K. I. / A krull-schmidt theorem for artinian modules over local rings. в: Journal of Mathematical Sciences. 2002 ; Том 112, № 4. стр. 4407-4409.

BibTeX

@article{9133154f26cb4e4286e303648729c68f,
title = "A krull-schmidt theorem for artinian modules over local rings",
abstract = "The paper contains a generalization of Fitting{\textquoteright}s lemma for Artinian modules of arbitrary length over some nonNoetherian local rings. A counterexample to a strong form of the Krull-Schmidt theorem for Artinian modules over a local ring is constructed.",
author = "Pimenov, {K. I.}",
year = "2002",
month = jan,
day = "1",
doi = "10.1023/A:1020363507415",
language = "English",
volume = "112",
pages = "4407--4409",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - A krull-schmidt theorem for artinian modules over local rings

AU - Pimenov, K. I.

PY - 2002/1/1

Y1 - 2002/1/1

N2 - The paper contains a generalization of Fitting’s lemma for Artinian modules of arbitrary length over some nonNoetherian local rings. A counterexample to a strong form of the Krull-Schmidt theorem for Artinian modules over a local ring is constructed.

AB - The paper contains a generalization of Fitting’s lemma for Artinian modules of arbitrary length over some nonNoetherian local rings. A counterexample to a strong form of the Krull-Schmidt theorem for Artinian modules over a local ring is constructed.

UR - http://www.scopus.com/inward/record.url?scp=52649111273&partnerID=8YFLogxK

U2 - 10.1023/A:1020363507415

DO - 10.1023/A:1020363507415

M3 - Article

AN - SCOPUS:52649111273

VL - 112

SP - 4407

EP - 4409

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 36910504