DOI

By introducing a tangential space to the manifold of all possible positions of a mechanical system of equations, its motions are written in the form of a single vector equation, which has the form of Newton's second law. From this equation, written for ideal non-linear time-dependent non-holonomic first-order constraints, the Poincaré- Chetayev- Rumyantsev equations, as well as other fundamental types of equations of motion, are obtained.

Язык оригиналаанглийский
Страницы (с-по)723-730
Число страниц8
ЖурналJournal of Applied Mathematics and Mechanics
Том65
Номер выпуска5
DOI
СостояниеОпубликовано - 2001

    Предметные области Scopus

  • Моделирование и симуляция
  • Сопротивление материалов
  • Общее машиностроение
  • Прикладная математика

ID: 71885959