Результаты исследований: Научные публикации в периодических изданиях › статья
A gap in the spectrum of the Neumann-Laplacian on a periodic waveguide. / Bakharev, F.L.; Nazarov, S.A.; Ruotsalainen, K.M.
в: Applicable Analysis, Том 92, № 9, 2013, стр. 1889-1915.Результаты исследований: Научные публикации в периодических изданиях › статья
}
TY - JOUR
T1 - A gap in the spectrum of the Neumann-Laplacian on a periodic waveguide
AU - Bakharev, F.L.
AU - Nazarov, S.A.
AU - Ruotsalainen, K.M.
PY - 2013
Y1 - 2013
N2 - We study a spectral problem related to the Laplace operator in a singularly perturbed periodic waveguide. The waveguide is a quasi-cylinder which contains a periodic arrangement of inclusions. On the boundary of the waveguide, we consider both Neumann and Dirichlet conditions. We prove that provided the diameter of the inclusion is small enough the spectrum of Laplace operator contains band gaps, i.e. there are frequencies that do not propagate through the waveguide. The existence of the band gaps is verified using the asymptotic analysis of elliptic operators.
AB - We study a spectral problem related to the Laplace operator in a singularly perturbed periodic waveguide. The waveguide is a quasi-cylinder which contains a periodic arrangement of inclusions. On the boundary of the waveguide, we consider both Neumann and Dirichlet conditions. We prove that provided the diameter of the inclusion is small enough the spectrum of Laplace operator contains band gaps, i.e. there are frequencies that do not propagate through the waveguide. The existence of the band gaps is verified using the asymptotic analysis of elliptic operators.
KW - Helmholtz equation
KW - periodic waveguide
KW - spectral gaps
KW - singularly perturbed domains
U2 - 10.1080/00036811.2012.711819
DO - 10.1080/00036811.2012.711819
M3 - Article
VL - 92
SP - 1889
EP - 1915
JO - Applicable Analysis
JF - Applicable Analysis
SN - 0003-6811
IS - 9
ER -
ID: 5626089