Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
A finite Q-bad space. / Ivanov, Sergei O.; Mikhailov, Roman.
в: Geometry and Topology, Том 23, № 3, 01.01.2019, стр. 1237-1249.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - A finite Q-bad space
AU - Ivanov, Sergei O.
AU - Mikhailov, Roman
PY - 2019/1/1
Y1 - 2019/1/1
N2 - We prove that, for a free noncyclic group F, the second homology group H2(FQ;Q/ is an uncountable Q-vector space, where FQ denotes the Q-completion of F. This solves a problem of AK Bousfield for the case of rational coefficients. As a direct consequence of this result, it follows that a wedge of two or more circles is Q-bad in the sense of Bousfield-Kan. The same methods as used in the proof of the above result serve to show that H2 (FZ, Z) is not a divisible group, where FZ is the integral pronilpotent completion of F.
AB - We prove that, for a free noncyclic group F, the second homology group H2(FQ;Q/ is an uncountable Q-vector space, where FQ denotes the Q-completion of F. This solves a problem of AK Bousfield for the case of rational coefficients. As a direct consequence of this result, it follows that a wedge of two or more circles is Q-bad in the sense of Bousfield-Kan. The same methods as used in the proof of the above result serve to show that H2 (FZ, Z) is not a divisible group, where FZ is the integral pronilpotent completion of F.
UR - http://www.scopus.com/inward/record.url?scp=85068852470&partnerID=8YFLogxK
U2 - 10.2140/gt.2019.23.1237
DO - 10.2140/gt.2019.23.1237
M3 - Article
AN - SCOPUS:85068852470
VL - 23
SP - 1237
EP - 1249
JO - Geometry and Topology
JF - Geometry and Topology
SN - 1465-3060
IS - 3
ER -
ID: 46233979