DOI

Let Γ be a closed, Jordan, rectifiable curve, whose are length is commensurable with its subtending chord, let a ε int Γ, and let Rn(a) be the set of rational functions of degree ≤n, having a pole perhaps only at the point a. Let Λα(Γ), 0 < α < 1, be the Hölder class on Γ. One constructs a system of weights γn(z) > 0 on Γ such that f∈Λα(Γ) if and only if for any nonnegative integer n there exists a function Rn, Rn ε Rn(a) such that |f(z) - Rn(z)| ≤ cf·γn(z), z ε Γ. It is proved that the weights γn cannot be expressed simply in terms of ρ1+/n(z) and ρ1-/n(z), the distances to the level lines of the moduli of the conformal mappings of ext Γ and int Γ on {Mathematical expression}.

Язык оригиналаанглийский
Страницы (с-по)1306-1322
Число страниц17
ЖурналJournal of Soviet Mathematics
Том37
Номер выпуска5
DOI
СостояниеОпубликовано - июн 1987
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 86663585