Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Let Γ be a closed, Jordan, rectifiable curve, whose are length is commensurable with its subtending chord, let a ε int Γ, and let Rn(a) be the set of rational functions of degree ≤n, having a pole perhaps only at the point a. Let Λα(Γ), 0 < α < 1, be the Hölder class on Γ. One constructs a system of weights γn(z) > 0 on Γ such that f∈Λα(Γ) if and only if for any nonnegative integer n there exists a function Rn, Rn ε Rn(a) such that |f(z) - Rn(z)| ≤ cf·γn(z), z ε Γ. It is proved that the weights γn cannot be expressed simply in terms of ρ1+/n(z) and ρ1-/n(z), the distances to the level lines of the moduli of the conformal mappings of ext Γ and int Γ on {Mathematical expression}.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 1306-1322 |
Число страниц | 17 |
Журнал | Journal of Soviet Mathematics |
Том | 37 |
Номер выпуска | 5 |
DOI | |
Состояние | Опубликовано - июн 1987 |
Опубликовано для внешнего пользования | Да |
ID: 86663585