DOI

We call a cusped hyperbolic 3-manifold tetrahedral if it can be decomposed into regular ideal tetrahedra. Following an earlier publication by three of the authors, we give a census of all tetrahedral manifolds and all of their combinatorial tetrahedral tessellations with at most 25 (orientable case) and 21 (non-orientable case) tetrahedra. Our isometry classification uses certified canonical cell decompositions (based onwork by Dunfield, Hoffman, and Licata) and isomorphism signatures (an improvement of dehydration sequences by Burton). The tetrahedral census comes in Regina as well as SnapPy format, and we illustrate its features.

Язык оригиналаанглийский
Страницы (с-по)466-481
Число страниц16
ЖурналExperimental Mathematics
Том25
Номер выпуска4
DOI
СостояниеОпубликовано - 1 янв 2016

    Предметные области Scopus

  • Математика (все)

ID: 40113059