Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
13C-NMR spectroscopy of humic substances isolated from agricultural soils of Puchuncavi (El Melon and Puchuncavi areas), central Chile. / Alekseev, Ivan ; Abakumov, Evgeny .
в: Soil and Water Research, 20.01.2020.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - 13C-NMR spectroscopy of humic substances isolated from agricultural soils of Puchuncavi (El Melon and Puchuncavi areas), central Chile
AU - Alekseev, Ivan
AU - Abakumov, Evgeny
N1 - Alekseev I., Abakumov E. (2020): 13C-NMR spectroscopy of humic substances isolated from the agricultural soils of Puchuncavi (El Melón and Puchuncavi areas), central Chile. Soil & Water Res.
PY - 2020/1/20
Y1 - 2020/1/20
N2 - Chile is a well-developed agricultural country, which is faced with the problem of agricultural soil contamination with metals, such as Cu, Cd, Pb and Zn, and metalloids (As). These elements can be retained by soils through different mechanisms, i.e., complex-forming with organic matter or occlusion within organic matter. That is why studying soil contamination should also be accompanied by detailed investigations of the soil organic matter composition. Soil organic matter is crucial for plant growth since its decomposition releases nitrogen, phosphorus and other nutrients available for the plants. 13C nuclear magnetic resonance spectroscopy, providing crucial data on carbon functional structures diversity, can also be used to study changes in the soil organic matter (SOM) during decomposition and humification. This study is aimed at investigating the molecular composition of the soil organic matter in the agricultural soils of urbanised areas of central Chile using 13C nuclear magnetic resonance (NMR) spectroscopy. The studied soils were characterised by almost neutral pH values and organic carbon contents from 1.7% to 5.2%. The results showed that soils with an increased content of the total organic matter demonstrated an increased portion of aromaticity and a decreased portion of aliphaticity. Most of the investigated humic acids show the highest peaks centred at 125 ppm, which can be tentatively assigned to aromatic alkene structures. The relatively high stabilisation rate of the organic matter in the studied soils can be explained by the mineralisation of its peripheral part, which, in turn, is explained by the decreasing C/N ratio values. The humic substances of the studied agricultural soils of central Chile showed a high average content of aromatic carbon, which is also typical for subboreal soils.
AB - Chile is a well-developed agricultural country, which is faced with the problem of agricultural soil contamination with metals, such as Cu, Cd, Pb and Zn, and metalloids (As). These elements can be retained by soils through different mechanisms, i.e., complex-forming with organic matter or occlusion within organic matter. That is why studying soil contamination should also be accompanied by detailed investigations of the soil organic matter composition. Soil organic matter is crucial for plant growth since its decomposition releases nitrogen, phosphorus and other nutrients available for the plants. 13C nuclear magnetic resonance spectroscopy, providing crucial data on carbon functional structures diversity, can also be used to study changes in the soil organic matter (SOM) during decomposition and humification. This study is aimed at investigating the molecular composition of the soil organic matter in the agricultural soils of urbanised areas of central Chile using 13C nuclear magnetic resonance (NMR) spectroscopy. The studied soils were characterised by almost neutral pH values and organic carbon contents from 1.7% to 5.2%. The results showed that soils with an increased content of the total organic matter demonstrated an increased portion of aromaticity and a decreased portion of aliphaticity. Most of the investigated humic acids show the highest peaks centred at 125 ppm, which can be tentatively assigned to aromatic alkene structures. The relatively high stabilisation rate of the organic matter in the studied soils can be explained by the mineralisation of its peripheral part, which, in turn, is explained by the decreasing C/N ratio values. The humic substances of the studied agricultural soils of central Chile showed a high average content of aromatic carbon, which is also typical for subboreal soils.
KW - humic acids
KW - humification
KW - NMR spectroscopy
KW - Soil organic matter
UR - https://www.agriculturejournals.cz/web/swr.htm?type=article&id=81_2019-SWR
UR - https://www.agriculturejournals.cz/web/swr.htm?type=onlineFirstArticles
M3 - Article
JO - Soil and Water Research
JF - Soil and Water Research
SN - 1801-5395
ER -
ID: 49954312