Standard

Отрицательное термическое расширение β-Rb2SO4. / Шаблинский, Андрей Павлович; Демина, Софья Владимировна; Бубнова, Римма Сергеевна; Филатов, Станислав Константинович.

в: Lithosphere (Russian Federation), Том 24, № 2, 03.05.2024, стр. 254-263.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{34ae00799acf40e397680e9fa9023204,
title = "Отрицательное термическое расширение β-Rb2SO4",
abstract = "The low-temperature modification of β-Rb2SO4 sulfate (Pmcn). Aim. Low-temperature study of the thermal expansion of β-Rb2SO4 by high-temperature powder X-ray diffraction in comparison with the crystal structure, as well as interpretation of the anisotropy of β-Rb2SO4 thermal expansion. Materials and Method. Powder X-ray diffraction and high-temperature powder X-ray diffraction. Results. The thermal expansion of β-Rb2SO4 sulfate was studied for the first time using low-temperature powder thermal X-ray diffraction in comparison with the crystal structure. The phase composition was confirmed by powder X-ray diffraction. The thermal expansion of β-Rb2SO4 is practically isotropic. Across the temperature range from –177 to –140°C, the sulfate experiences negative thermal expansion. A further increase in temperature leads to a change in its thermal expansion, which becomes positive. It is proposed to consider the crystal structure of β-Rb2SO4 sulfate as a mixed framework of [RbSO4]–1, which, in turn, consists of fundamental building units (microblocks) of Rb(SO4)6. Across the temperature range from room temperature to –100°C, the maximum expansion of β-Rb2SO4 sulfate occurs along the a axis. The minimum thermal expansion is observed along the c-axis, along the columns consisting of microblocks (αa = 65.4(3)∙10–6°C–1, αb = 59.7(2)∙10–6°C–1, αc = 58.6(2)∙10–6°C–1 at +25°C). In the temperature range from –177 to –140°C, thermal expansion is negative in all three directions (αa = –10.3(3)∙10–6°C–1, αb = –8.6(2)∙10–6°C–1, αc = = –9.7(2)∙10–6°C–1 at –170°C). Conclusion. The thermal expansion of β-Rb2SO4 sulfate in the low-temperature range (from –177 to –25°C) was studied for the first time, its structural interpretation was performed. A comparison was given with the thermal expansion of isostructural β-K2SO4.",
keywords = "high temperature powder X-ray diffraction, negative thermal expansion, rubidium sulfate",
author = "Шаблинский, {Андрей Павлович} and Демина, {Софья Владимировна} and Бубнова, {Римма Сергеевна} and Филатов, {Станислав Константинович}",
year = "2024",
month = may,
day = "3",
doi = "10.24930/1681-9004-2024-24-2-254-263",
language = "русский",
volume = "24",
pages = "254--263",
journal = "Lithosphere (Russian Federation)",
issn = "1681-9004",
publisher = "Институт геологии и геохимии им. академика А.Н. Заварицкого",
number = "2",

}

RIS

TY - JOUR

T1 - Отрицательное термическое расширение β-Rb2SO4

AU - Шаблинский, Андрей Павлович

AU - Демина, Софья Владимировна

AU - Бубнова, Римма Сергеевна

AU - Филатов, Станислав Константинович

PY - 2024/5/3

Y1 - 2024/5/3

N2 - The low-temperature modification of β-Rb2SO4 sulfate (Pmcn). Aim. Low-temperature study of the thermal expansion of β-Rb2SO4 by high-temperature powder X-ray diffraction in comparison with the crystal structure, as well as interpretation of the anisotropy of β-Rb2SO4 thermal expansion. Materials and Method. Powder X-ray diffraction and high-temperature powder X-ray diffraction. Results. The thermal expansion of β-Rb2SO4 sulfate was studied for the first time using low-temperature powder thermal X-ray diffraction in comparison with the crystal structure. The phase composition was confirmed by powder X-ray diffraction. The thermal expansion of β-Rb2SO4 is practically isotropic. Across the temperature range from –177 to –140°C, the sulfate experiences negative thermal expansion. A further increase in temperature leads to a change in its thermal expansion, which becomes positive. It is proposed to consider the crystal structure of β-Rb2SO4 sulfate as a mixed framework of [RbSO4]–1, which, in turn, consists of fundamental building units (microblocks) of Rb(SO4)6. Across the temperature range from room temperature to –100°C, the maximum expansion of β-Rb2SO4 sulfate occurs along the a axis. The minimum thermal expansion is observed along the c-axis, along the columns consisting of microblocks (αa = 65.4(3)∙10–6°C–1, αb = 59.7(2)∙10–6°C–1, αc = 58.6(2)∙10–6°C–1 at +25°C). In the temperature range from –177 to –140°C, thermal expansion is negative in all three directions (αa = –10.3(3)∙10–6°C–1, αb = –8.6(2)∙10–6°C–1, αc = = –9.7(2)∙10–6°C–1 at –170°C). Conclusion. The thermal expansion of β-Rb2SO4 sulfate in the low-temperature range (from –177 to –25°C) was studied for the first time, its structural interpretation was performed. A comparison was given with the thermal expansion of isostructural β-K2SO4.

AB - The low-temperature modification of β-Rb2SO4 sulfate (Pmcn). Aim. Low-temperature study of the thermal expansion of β-Rb2SO4 by high-temperature powder X-ray diffraction in comparison with the crystal structure, as well as interpretation of the anisotropy of β-Rb2SO4 thermal expansion. Materials and Method. Powder X-ray diffraction and high-temperature powder X-ray diffraction. Results. The thermal expansion of β-Rb2SO4 sulfate was studied for the first time using low-temperature powder thermal X-ray diffraction in comparison with the crystal structure. The phase composition was confirmed by powder X-ray diffraction. The thermal expansion of β-Rb2SO4 is practically isotropic. Across the temperature range from –177 to –140°C, the sulfate experiences negative thermal expansion. A further increase in temperature leads to a change in its thermal expansion, which becomes positive. It is proposed to consider the crystal structure of β-Rb2SO4 sulfate as a mixed framework of [RbSO4]–1, which, in turn, consists of fundamental building units (microblocks) of Rb(SO4)6. Across the temperature range from room temperature to –100°C, the maximum expansion of β-Rb2SO4 sulfate occurs along the a axis. The minimum thermal expansion is observed along the c-axis, along the columns consisting of microblocks (αa = 65.4(3)∙10–6°C–1, αb = 59.7(2)∙10–6°C–1, αc = 58.6(2)∙10–6°C–1 at +25°C). In the temperature range from –177 to –140°C, thermal expansion is negative in all three directions (αa = –10.3(3)∙10–6°C–1, αb = –8.6(2)∙10–6°C–1, αc = = –9.7(2)∙10–6°C–1 at –170°C). Conclusion. The thermal expansion of β-Rb2SO4 sulfate in the low-temperature range (from –177 to –25°C) was studied for the first time, its structural interpretation was performed. A comparison was given with the thermal expansion of isostructural β-K2SO4.

KW - high temperature powder X-ray diffraction

KW - negative thermal expansion

KW - rubidium sulfate

UR - https://www.mendeley.com/catalogue/23dc7239-9deb-3a4b-9668-9f59696e0229/

U2 - 10.24930/1681-9004-2024-24-2-254-263

DO - 10.24930/1681-9004-2024-24-2-254-263

M3 - статья

VL - 24

SP - 254

EP - 263

JO - Lithosphere (Russian Federation)

JF - Lithosphere (Russian Federation)

SN - 1681-9004

IS - 2

ER -

ID: 127773632