Standard

Прогнозирование динамики эпидемии коронавируса (COVID-19) на основе метода прецедентов. / Zakharov, V. V.; Balykina, Yu E.

в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том 16, № 3, 2020, стр. 249-259.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Zakharov, VV & Balykina, YE 2020, 'Прогнозирование динамики эпидемии коронавируса (COVID-19) на основе метода прецедентов', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том. 16, № 3, стр. 249-259. https://doi.org/10.21638/11701/spbu10.2020.303, https://doi.org/10.21638/11701/SPBU10.2020.303

APA

Zakharov, V. V., & Balykina, Y. E. (2020). Прогнозирование динамики эпидемии коронавируса (COVID-19) на основе метода прецедентов. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, 16(3), 249-259. https://doi.org/10.21638/11701/spbu10.2020.303, https://doi.org/10.21638/11701/SPBU10.2020.303

Vancouver

Zakharov VV, Balykina YE. Прогнозирование динамики эпидемии коронавируса (COVID-19) на основе метода прецедентов. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2020;16(3):249-259. https://doi.org/10.21638/11701/spbu10.2020.303, https://doi.org/10.21638/11701/SPBU10.2020.303

Author

Zakharov, V. V. ; Balykina, Yu E. / Прогнозирование динамики эпидемии коронавируса (COVID-19) на основе метода прецедентов. в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2020 ; Том 16, № 3. стр. 249-259.

BibTeX

@article{b1c412282b7b4551ba0a6b8b1329c6b7,
title = "Прогнозирование динамики эпидемии коронавируса (COVID-19) на основе метода прецедентов",
abstract = "The case-based rate reasoning (CBRR) method is presented for predicting future values of the coronavirus epidemic's main parameters in Russia, which makes it possible to build short-term forecasts based on analogues of the percentage growth dynamics in other countries. A new heuristic method for estimating the duration of the transition process of the percentage increase between specified levels is described, taking into account information about the dynamics of epidemiological processes in countries of the spreading chain. The CBRR software module has been developed in the MATLAB environment, which implements the proposed approach and intelligent proprietary algorithms for constructing trajectories of predicted epidemic indicators.",
keywords = "Case-based reasoning, COVID-19 epidemic, Forecasting, Heuristic, Modeling, Percentage rate of increase",
author = "Zakharov, {V. V.} and Balykina, {Yu E.}",
note = "Publisher Copyright: {\textcopyright} 2020 Saint Petersburg State University. All rights reserved. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
doi = "10.21638/11701/spbu10.2020.303",
language = "русский",
volume = "16",
pages = "249--259",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "3",

}

RIS

TY - JOUR

T1 - Прогнозирование динамики эпидемии коронавируса (COVID-19) на основе метода прецедентов

AU - Zakharov, V. V.

AU - Balykina, Yu E.

N1 - Publisher Copyright: © 2020 Saint Petersburg State University. All rights reserved. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020

Y1 - 2020

N2 - The case-based rate reasoning (CBRR) method is presented for predicting future values of the coronavirus epidemic's main parameters in Russia, which makes it possible to build short-term forecasts based on analogues of the percentage growth dynamics in other countries. A new heuristic method for estimating the duration of the transition process of the percentage increase between specified levels is described, taking into account information about the dynamics of epidemiological processes in countries of the spreading chain. The CBRR software module has been developed in the MATLAB environment, which implements the proposed approach and intelligent proprietary algorithms for constructing trajectories of predicted epidemic indicators.

AB - The case-based rate reasoning (CBRR) method is presented for predicting future values of the coronavirus epidemic's main parameters in Russia, which makes it possible to build short-term forecasts based on analogues of the percentage growth dynamics in other countries. A new heuristic method for estimating the duration of the transition process of the percentage increase between specified levels is described, taking into account information about the dynamics of epidemiological processes in countries of the spreading chain. The CBRR software module has been developed in the MATLAB environment, which implements the proposed approach and intelligent proprietary algorithms for constructing trajectories of predicted epidemic indicators.

KW - Case-based reasoning

KW - COVID-19 epidemic

KW - Forecasting

KW - Heuristic

KW - Modeling

KW - Percentage rate of increase

UR - http://www.scopus.com/inward/record.url?scp=85093678813&partnerID=8YFLogxK

U2 - 10.21638/11701/spbu10.2020.303

DO - 10.21638/11701/spbu10.2020.303

M3 - статья

VL - 16

SP - 249

EP - 259

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 3

ER -

ID: 72139913