Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
МОДЕЛИРОВАНИЕ СОЧЛЕНЕНИЙ ПЛАСТИН И СТЕРЖНЕЙ ПОСРЕДСТВОМ САМОСОПРЯЖЕННЫХ РАСШИРЕНИЙ Modeling junctions of plates and rods by means of selfadjoint extensions. / Дуранте, Т.; Кардоне, Дж.; Назаров, С.А.
в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 1: МАТЕМАТИКА, МЕХАНИКА, АСТРОНОМИЯ, № 2, 2009, стр. 3-14.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - МОДЕЛИРОВАНИЕ СОЧЛЕНЕНИЙ ПЛАСТИН И СТЕРЖНЕЙ ПОСРЕДСТВОМ САМОСОПРЯЖЕННЫХ РАСШИРЕНИЙ Modeling junctions of plates and rods by means of selfadjoint extensions
AU - Дуранте, Т.
AU - Кардоне, Дж.
AU - Назаров, С.А.
PY - 2009
Y1 - 2009
N2 - Работа третьего автора выполнена при финансовой поддержке РФФИ (грант № 06-01-257). Дуранте Т., Кардоне Дж., Назаров С.А. Моделирование сочленений пластин и стержней посредством самосопряженных расширений // Вестн. С.-Петерб. ун-та. Сер. 1. 2009. Вып. 2. С. 3-14. На основе асимптотического анализа эллиптических задач в тонких областях и их сочленениях строится модель смешанной краевой задачи для скалярного дифференциального уравнения второго порядка на объединении трехмерных тонких стержней и пластины. Один из концов каждого стержня присоединен к пластине, а на другом поставлены условия Дирихле, но на остальной части границы сочленения назначены краевые условия Неймана. Асимптотическое разложение решения такой задачи обладает несколькими отличительными особенностями: коэффициенты в разложении оказываются рациональными функциями большого параметра | lnh| (h ∈ (0,1] -малый геометрический параметр), а решение предельной задачи в продольном сечении пластины приобретает логарифмические сингулярности в точках присо
AB - Работа третьего автора выполнена при финансовой поддержке РФФИ (грант № 06-01-257). Дуранте Т., Кардоне Дж., Назаров С.А. Моделирование сочленений пластин и стержней посредством самосопряженных расширений // Вестн. С.-Петерб. ун-та. Сер. 1. 2009. Вып. 2. С. 3-14. На основе асимптотического анализа эллиптических задач в тонких областях и их сочленениях строится модель смешанной краевой задачи для скалярного дифференциального уравнения второго порядка на объединении трехмерных тонких стержней и пластины. Один из концов каждого стержня присоединен к пластине, а на другом поставлены условия Дирихле, но на остальной части границы сочленения назначены краевые условия Неймана. Асимптотическое разложение решения такой задачи обладает несколькими отличительными особенностями: коэффициенты в разложении оказываются рациональными функциями большого параметра | lnh| (h ∈ (0,1] -малый геометрический параметр), а решение предельной задачи в продольном сечении пластины приобретает логарифмические сингулярности в точках присо
M3 - статья
SP - 3
EP - 14
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
SN - 1025-3106
IS - 2
ER -
ID: 5458243