Четвертая статья из серии обзоров о научных достижениях Ленинградской - Санкт-Петербургской школы теории вероятностей и математической статистики в период с 1947 по 2017 г. посвящена характеризации распределений, предельным теоремам для ядерных оценок плотности и асимптотической эффективности статистических критериев. Характеризационные результаты связаны с независимостью и равнораспределенностью линейных форм от выборочных значений, а также с регрессионными соотношениями, допустимостью и оптимальностью статистических оценок. При вычислении асимптотической эффективности по Бахадуру особое внимание уделяется логарифмической асимптотике вероятностей больших уклонений тестовых статистик при основной гипотезе. Рассматривается также построение новых критериев согласия и симметрии, основанных на характеризациях, и исследуется их асимптотическое поведение. Изучаются также условия локальной асимптотической оптимальности разнообразных непараметрических статистических критериев.