Standard

МОДЕЛИРОВАНИЕ УПРАВЛЯЕМОГО ПОСТУПАТЕЛЬНО-ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НЕБЕСНОГО ТЕЛА В ОКРЕСТНОСТИ КОЛЛИНЕАРНОЙ ТОЧКИ ЛИБРАЦИИ L1. / Shymanchuk, D. V.

в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том 13, № 2, 2017, стр. 147-167.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Shymanchuk, DV 2017, 'МОДЕЛИРОВАНИЕ УПРАВЛЯЕМОГО ПОСТУПАТЕЛЬНО-ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НЕБЕСНОГО ТЕЛА В ОКРЕСТНОСТИ КОЛЛИНЕАРНОЙ ТОЧКИ ЛИБРАЦИИ L1', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том. 13, № 2, стр. 147-167. https://doi.org/10.21638/11701/spbu10.2017.203

APA

Shymanchuk, D. V. (2017). МОДЕЛИРОВАНИЕ УПРАВЛЯЕМОГО ПОСТУПАТЕЛЬНО-ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НЕБЕСНОГО ТЕЛА В ОКРЕСТНОСТИ КОЛЛИНЕАРНОЙ ТОЧКИ ЛИБРАЦИИ L1. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, 13(2), 147-167. https://doi.org/10.21638/11701/spbu10.2017.203

Vancouver

Shymanchuk DV. МОДЕЛИРОВАНИЕ УПРАВЛЯЕМОГО ПОСТУПАТЕЛЬНО-ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НЕБЕСНОГО ТЕЛА В ОКРЕСТНОСТИ КОЛЛИНЕАРНОЙ ТОЧКИ ЛИБРАЦИИ L1. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2017;13(2):147-167. https://doi.org/10.21638/11701/spbu10.2017.203

Author

Shymanchuk, D. V. / МОДЕЛИРОВАНИЕ УПРАВЛЯЕМОГО ПОСТУПАТЕЛЬНО-ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НЕБЕСНОГО ТЕЛА В ОКРЕСТНОСТИ КОЛЛИНЕАРНОЙ ТОЧКИ ЛИБРАЦИИ L1. в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2017 ; Том 13, № 2. стр. 147-167.

BibTeX

@article{82b5d53c1ef44c1abe32a6ebd8f1e00e,
title = "МОДЕЛИРОВАНИЕ УПРАВЛЯЕМОГО ПОСТУПАТЕЛЬНО-ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НЕБЕСНОГО ТЕЛА В ОКРЕСТНОСТИ КОЛЛИНЕАРНОЙ ТОЧКИ ЛИБРАЦИИ L1",
abstract = "This paper considers the motion of a celestial body (as a rigid body) within the restricted threebody problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of a circular restricted threebody problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. As an important result, we investigate the problems of celestial body motion stability in relative equilibrium positions and stabilization of a celestial body motion with proposed control laws in collinear libration point L1. To study stabilization problems, Lyapunov function is constructed in the form of the sum of the kinetic energy of a celestial body and special {"}kinematics{"} function of the Rodriguez-Hamiltonian parameters. The numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion of the celestial body are given. Results of numerical integration are presented graphically.",
keywords = "Control, Coupled attitude-orbit motion, Hill's problem, Libration point, Restricted three body problem, Rigid body, Stabilization",
author = "Shymanchuk, {D. V.}",
year = "2017",
doi = "10.21638/11701/spbu10.2017.203",
language = "русский",
volume = "13",
pages = "147--167",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "2",

}

RIS

TY - JOUR

T1 - МОДЕЛИРОВАНИЕ УПРАВЛЯЕМОГО ПОСТУПАТЕЛЬНО-ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ НЕБЕСНОГО ТЕЛА В ОКРЕСТНОСТИ КОЛЛИНЕАРНОЙ ТОЧКИ ЛИБРАЦИИ L1

AU - Shymanchuk, D. V.

PY - 2017

Y1 - 2017

N2 - This paper considers the motion of a celestial body (as a rigid body) within the restricted threebody problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of a circular restricted threebody problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. As an important result, we investigate the problems of celestial body motion stability in relative equilibrium positions and stabilization of a celestial body motion with proposed control laws in collinear libration point L1. To study stabilization problems, Lyapunov function is constructed in the form of the sum of the kinetic energy of a celestial body and special "kinematics" function of the Rodriguez-Hamiltonian parameters. The numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion of the celestial body are given. Results of numerical integration are presented graphically.

AB - This paper considers the motion of a celestial body (as a rigid body) within the restricted threebody problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of a circular restricted threebody problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. As an important result, we investigate the problems of celestial body motion stability in relative equilibrium positions and stabilization of a celestial body motion with proposed control laws in collinear libration point L1. To study stabilization problems, Lyapunov function is constructed in the form of the sum of the kinetic energy of a celestial body and special "kinematics" function of the Rodriguez-Hamiltonian parameters. The numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion of the celestial body are given. Results of numerical integration are presented graphically.

KW - Control

KW - Coupled attitude-orbit motion

KW - Hill's problem

KW - Libration point

KW - Restricted three body problem

KW - Rigid body

KW - Stabilization

UR - http://www.scopus.com/inward/record.url?scp=85031092599&partnerID=8YFLogxK

UR - https://elibrary.ru/item.asp?id=29816738

U2 - 10.21638/11701/spbu10.2017.203

DO - 10.21638/11701/spbu10.2017.203

M3 - статья

AN - SCOPUS:85031092599

VL - 13

SP - 147

EP - 167

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 2

ER -

ID: 9426820