Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Метод кодифференциального спуска в задаче нахождения глобального минимума кусочно-аффинного целевого функционала в линейных системах управлени. / Fominyh, Alexander V.; Karelin, Vladimir V.; Polyakova, Lyudmila N.; Myshkov, Stanislav K.; Tregubov, Vladimir P.
в: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, Том 17, № 1, 2021, стр. 47-58.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Метод кодифференциального спуска в задаче нахождения глобального минимума кусочно-аффинного целевого функционала в линейных системах управлени
AU - Fominyh, Alexander V.
AU - Karelin, Vladimir V.
AU - Polyakova, Lyudmila N.
AU - Myshkov, Stanislav K.
AU - Tregubov, Vladimir P.
N1 - Funding Information: ∗ This work was supported by the Russian Science Foundation (project N 20-71-10032). Publisher Copyright: © 2021 Saint Petersburg State University. All rights reserved. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021
Y1 - 2021
N2 - The article considers the problem of optimal control of an object described by a linear nonstationary system and with a piecewise affine quality functional. The problem is examined in Mayer's form with both free and partially fixed right endpoints. Piecewise continuous and bounded controls that lie in some parallelepiped at each moment of time are admissible. The standard discretization of the original system and the control parametrization are used, some convergence theorems of the discrete problem solution to the continuous problem solution are presented. Further, for the obtained discrete system, the necessary and sufficient minimum conditions are written out in terms of the codifferential, the method of the modified codifferential descent is applied to it, which guarantees to find the global minimum of this problem in a finite number of steps. The proposed algorithm is illustrated with examples.
AB - The article considers the problem of optimal control of an object described by a linear nonstationary system and with a piecewise affine quality functional. The problem is examined in Mayer's form with both free and partially fixed right endpoints. Piecewise continuous and bounded controls that lie in some parallelepiped at each moment of time are admissible. The standard discretization of the original system and the control parametrization are used, some convergence theorems of the discrete problem solution to the continuous problem solution are presented. Further, for the obtained discrete system, the necessary and sufficient minimum conditions are written out in terms of the codifferential, the method of the modified codifferential descent is applied to it, which guarantees to find the global minimum of this problem in a finite number of steps. The proposed algorithm is illustrated with examples.
KW - Codifferential
KW - Method of codifferential descent method
KW - Nonsmooth optimal control problem
KW - Parametrization of control
KW - Piecewise affine function
KW - HYPODIFFERENTIAL DESCENT
KW - MAXIMUM PRINCIPLE
KW - NONSMOOTH
KW - PENALTY METHOD
KW - STATE
KW - codifferential
KW - method of codifferential descent method
KW - nonsmooth optimal control problem
KW - parametrization of control
KW - piecewise affine function
KW - Method of codifferential descent method
KW - Codifferential
KW - Nonsmooth optimal control problem
KW - Piecewise affine function
KW - Parametrization of control
UR - http://www.scopus.com/inward/record.url?scp=85106904416&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/498b01ae-2176-35ed-a37b-8b57f1886cf2/
U2 - 10.21638/11701/SPBU10.2021.105
DO - 10.21638/11701/SPBU10.2021.105
M3 - статья
AN - SCOPUS:85106904416
VL - 17
SP - 47
EP - 58
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ
SN - 1811-9905
IS - 1
ER -
ID: 77796692