Standard

Метод решения задачи оптимального управления в форме Майера с квазидифференцируемым функционалом при наличии фазовых ограничений. / Фоминых, Александр Владимирович; Карелин, Владимир Витальевич; Полякова, Людмила Николаевна.

в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том 19, № 1, 2023, стр. 120-134.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{01e751e2ff0c48b3adc2319669ffb891,
title = "Метод решения задачи оптимального управления в форме Майера с квазидифференцируемым функционалом при наличии фазовых ограничений",
abstract = "The article considers the problem of optimal control of an object described by a system of ordinary differential equations with a continuously differentiable right-hand side and with a nonsmooth (but only a quasidifferentiable) quality functional. The problem is in the Mayer form with either free or partially fixed right end. Piecewise-continuous and bounded controls are supposed to be admissible if they lie in some parallelepiped at any moment of time. The phase coordinates and controls are also subject to mixed pointwise constraints. Phase constraints are taken into account by introducing new variables with known boundary conditions into the system. The standard discretization of the original system and the parametrization of the control are carried out, theorems are given on the convergence of the solution of the discrete system obtained to the desired solution of the continuous problem. Further, in order to study the resulting discrete system, the apparatus of quasidifferential calculus is used and the method of the quasidifferential descent is applied. Examples illustrating the operation of the algorithm are given.",
author = "Фоминых, {Александр Владимирович} and Карелин, {Владимир Витальевич} and Полякова, {Людмила Николаевна}",
year = "2023",
doi = "10.21638/11701/spbu10.2023.110",
language = "русский",
volume = "19",
pages = "120--134",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "1",

}

RIS

TY - JOUR

T1 - Метод решения задачи оптимального управления в форме Майера с квазидифференцируемым функционалом при наличии фазовых ограничений

AU - Фоминых, Александр Владимирович

AU - Карелин, Владимир Витальевич

AU - Полякова, Людмила Николаевна

PY - 2023

Y1 - 2023

N2 - The article considers the problem of optimal control of an object described by a system of ordinary differential equations with a continuously differentiable right-hand side and with a nonsmooth (but only a quasidifferentiable) quality functional. The problem is in the Mayer form with either free or partially fixed right end. Piecewise-continuous and bounded controls are supposed to be admissible if they lie in some parallelepiped at any moment of time. The phase coordinates and controls are also subject to mixed pointwise constraints. Phase constraints are taken into account by introducing new variables with known boundary conditions into the system. The standard discretization of the original system and the parametrization of the control are carried out, theorems are given on the convergence of the solution of the discrete system obtained to the desired solution of the continuous problem. Further, in order to study the resulting discrete system, the apparatus of quasidifferential calculus is used and the method of the quasidifferential descent is applied. Examples illustrating the operation of the algorithm are given.

AB - The article considers the problem of optimal control of an object described by a system of ordinary differential equations with a continuously differentiable right-hand side and with a nonsmooth (but only a quasidifferentiable) quality functional. The problem is in the Mayer form with either free or partially fixed right end. Piecewise-continuous and bounded controls are supposed to be admissible if they lie in some parallelepiped at any moment of time. The phase coordinates and controls are also subject to mixed pointwise constraints. Phase constraints are taken into account by introducing new variables with known boundary conditions into the system. The standard discretization of the original system and the parametrization of the control are carried out, theorems are given on the convergence of the solution of the discrete system obtained to the desired solution of the continuous problem. Further, in order to study the resulting discrete system, the apparatus of quasidifferential calculus is used and the method of the quasidifferential descent is applied. Examples illustrating the operation of the algorithm are given.

UR - https://www.mendeley.com/catalogue/d530f1bb-29c1-34cc-af03-7c99c1e13ebb/

U2 - 10.21638/11701/spbu10.2023.110

DO - 10.21638/11701/spbu10.2023.110

M3 - статья

VL - 19

SP - 120

EP - 134

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 1

ER -

ID: 108174601