Решается задача о потере плоской формы равновесия бесконечной пластины с круговой вставкой из другого материала, находящейся под действием одноосного растяжения. Исследуется влияние модуля упругости вставки на значение критической нагрузки. Для нахождения минимального собственного числа, соответствующего первой критической нагрузке, применяется вариационный принцип. Расчеты проводятся в пакете Maple и сравниваются с результатами, полученными методом конечных элементов в пакете ANSYS 13.1. Проведенные расчеты показывают, что потеря устойчивости при вставке более мягкой, чем пластина, и при вставке более жесткой, чем пластина происходят по разным формам. При приближении значения модуля Юнга вставки к значению модуля Юнга пластины критическая нагрузка существенно увеличивается. При совпадении модулей упругости пластины и вставки потеря устойчивости невозможна. Библиогр. 10 назв. Ил. 5. Табл. 1.
Переведенное названиеStability loss of an infinite plate with a circular inclusion under uniaxial tension
Язык оригиналарусский
Страницы (с-по)266-272
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 1: МАТЕМАТИКА, МЕХАНИКА, АСТРОНОМИЯ
Том4(62)
Номер выпуска2
СостояниеОпубликовано - 2017

    Области исследований

  • потеря устойчивости пластины, энергетический метод

ID: 15730688