В 1964 году А. Н. Шарковский опубликовал статью, в которой было введено отношение порядка на множестве натуральных чисел, обладающее тем свойством, что если у отображения отрезка в себя имеется периодическая траектория некоторого периода, то у этого отображения есть периодические траектории любого большего периода. Наименьшим числом относительно этого отношения порядка является число 3. Таким образом, если у отображения отрезка в себя есть траектория периода 3, то у него есть траектории любых периодов. В 1975 году последний результат был переоткрыт Ли и Йорком, опубликовавшим статью «Period three implies chaos». В настоящей статье получена точная оценку снизу на число траекторий данного периода у отображения отрезка, у которого есть траектория периода 3. Ключевой момент рассуждения состоял в решении одной комбинаторной задачи, ответ на которую выражается через числа Люка. Как следствие получена явная формула для одного класса ожерелий. В статье также рассмотрено конкретное кусочно-линейное унимодальное отображение отрезка [0; 1] в себя, у которого можно найти точки произвольного заданного периода.
Переведенное названиеAn estimate for the number of periodical trajectories of the given period for a mapping of an interval, Lucas numbers, and necklaces
Язык оригиналарусский
Страницы (с-по)606-613
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
Том5(63)
Номер выпуска4
СостояниеОпубликовано - 2018

    Области исследований

  • периодическая траектория, отображения отрезка, порядок Шарковского, числа Люка, число ожерелий

ID: 36968993