Standard

О гипотезе Мищенко - Фоменко для обобщённого осциллятора и системы Кеплера. / Vladimirovich, Tsiganov Andrey.

в: Chebyshevskii Sbornik, Том 21, № 2, 01.01.2020, стр. 383-402.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{fa4ade440d3f4b97861d80c54902c8a0,
title = "О гипотезе Мищенко - Фоменко для обобщённого осциллятора и системы Кеплера",
abstract = "Deformations of the Kepler problem and the harmonic oscillator are considered for which additional integrals of motion are the coordinates of the reduced divisor, according to the Riemann-Roch theorem. For this family of non-commutative integrable systems the validity of the Mishchenko-Fomenko hypothesis about the existence of integrals of motion from a single functional class, in this case polynomial integrals of motion, is discussed.",
keywords = "Mishchenko-Fomenko conjecture, Noncommutative integrable systems, Superintegrable systems, Mishchenko-Fomenko conjecture, Noncommutative integrable systems, Superintegrable systems",
author = "Vladimirovich, {Tsiganov Andrey}",
year = "2020",
month = jan,
day = "1",
doi = "10.22405/2226-8383-2020-21-2-383-402",
language = "русский",
volume = "21",
pages = "383--402",
journal = "Chebyshevskii Sbornik",
issn = "2226-8383",
publisher = "Тульский государственный педагогический университет им. Л. Н. Толстого",
number = "2",

}

RIS

TY - JOUR

T1 - О гипотезе Мищенко - Фоменко для обобщённого осциллятора и системы Кеплера

AU - Vladimirovich, Tsiganov Andrey

PY - 2020/1/1

Y1 - 2020/1/1

N2 - Deformations of the Kepler problem and the harmonic oscillator are considered for which additional integrals of motion are the coordinates of the reduced divisor, according to the Riemann-Roch theorem. For this family of non-commutative integrable systems the validity of the Mishchenko-Fomenko hypothesis about the existence of integrals of motion from a single functional class, in this case polynomial integrals of motion, is discussed.

AB - Deformations of the Kepler problem and the harmonic oscillator are considered for which additional integrals of motion are the coordinates of the reduced divisor, according to the Riemann-Roch theorem. For this family of non-commutative integrable systems the validity of the Mishchenko-Fomenko hypothesis about the existence of integrals of motion from a single functional class, in this case polynomial integrals of motion, is discussed.

KW - Mishchenko-Fomenko conjecture

KW - Noncommutative integrable systems

KW - Superintegrable systems

KW - Mishchenko-Fomenko conjecture

KW - Noncommutative integrable systems

KW - Superintegrable systems

UR - http://www.scopus.com/inward/record.url?scp=85086124807&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/b4fab3f1-5b24-3d3d-91aa-b960fa68e5e5/

U2 - 10.22405/2226-8383-2020-21-2-383-402

DO - 10.22405/2226-8383-2020-21-2-383-402

M3 - статья

AN - SCOPUS:85086124807

VL - 21

SP - 383

EP - 402

JO - Chebyshevskii Sbornik

JF - Chebyshevskii Sbornik

SN - 2226-8383

IS - 2

ER -

ID: 60049892