Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
О гипотезе Мищенко - Фоменко для обобщённого осциллятора и системы Кеплера. / Vladimirovich, Tsiganov Andrey.
в: Chebyshevskii Sbornik, Том 21, № 2, 01.01.2020, стр. 383-402.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - О гипотезе Мищенко - Фоменко для обобщённого осциллятора и системы Кеплера
AU - Vladimirovich, Tsiganov Andrey
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Deformations of the Kepler problem and the harmonic oscillator are considered for which additional integrals of motion are the coordinates of the reduced divisor, according to the Riemann-Roch theorem. For this family of non-commutative integrable systems the validity of the Mishchenko-Fomenko hypothesis about the existence of integrals of motion from a single functional class, in this case polynomial integrals of motion, is discussed.
AB - Deformations of the Kepler problem and the harmonic oscillator are considered for which additional integrals of motion are the coordinates of the reduced divisor, according to the Riemann-Roch theorem. For this family of non-commutative integrable systems the validity of the Mishchenko-Fomenko hypothesis about the existence of integrals of motion from a single functional class, in this case polynomial integrals of motion, is discussed.
KW - Mishchenko-Fomenko conjecture
KW - Noncommutative integrable systems
KW - Superintegrable systems
KW - Mishchenko-Fomenko conjecture
KW - Noncommutative integrable systems
KW - Superintegrable systems
UR - http://www.scopus.com/inward/record.url?scp=85086124807&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/b4fab3f1-5b24-3d3d-91aa-b960fa68e5e5/
U2 - 10.22405/2226-8383-2020-21-2-383-402
DO - 10.22405/2226-8383-2020-21-2-383-402
M3 - статья
AN - SCOPUS:85086124807
VL - 21
SP - 383
EP - 402
JO - Chebyshevskii Sbornik
JF - Chebyshevskii Sbornik
SN - 2226-8383
IS - 2
ER -
ID: 60049892