Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
О методе Монте-Карло для решения больших систем линейных обыкновенных дифференциальных уравнений. / Ермаков, Сергей Михайлович; Смиловицкий, Максим Григорьевич.
в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ, Том 8, № 1, 2021, стр. 37-38.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - О методе Монте-Карло для решения больших систем линейных обыкновенных дифференциальных уравнений
AU - Ермаков, Сергей Михайлович
AU - Смиловицкий, Максим Григорьевич
N1 - Ермаков, С. М., & Смиловицкий, М. Г. (2021). О методе Монте-Карло для решения больших систем линейных обыкновенных дифференциальных уравнений. Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия, 8(1), 37-48. https://doi.org/10.21638/spbu01.2021.104
PY - 2021
Y1 - 2021
N2 - Монте-Карло к решению задачи Коши для больших систем линейных дифференциальных уравнений. В первой части статьи дается краткий обзор уже известных результатов применения метода для решения интегральных уравнений Фредгольма. В основной части статьи разбирается применение подхода к системе линейных ОДУ, которая приводится к эквивиалентной системе интегральных уравнений Вольтерра. Это позволяет снять ограничения, связанные со сходимостью мажорантного процесса. Формулируются следующие ключевые теоремы. Теорема 1 указывает требуемые условия согласования, которым должны отвечать переходная и начальная плотности распределения, инициирующие соответствующую цепь Маркова, для которой выполняется равенство между математическим ожиданием оценки и интересующим нас функционалом. Теорема 2 формулирует выражение для дисперсии оценки, в то время как теорема 3 указывает параметры цепи Маркова, минимизирующие значение дисперсии для оценки функционала. В работе приводятся доказательства всех трех теорем. В практической части предложенный метод применяется к системе линейных ОДУ, описывающих замкнутую систему массового обслуживания из десяти условных машин и семи условных рабочих. Решение приводится как для системы с постоянной матрицей коэффициентов, так и для системы с переменной матрицей, где в зависимости от времени меняется интенсивноcть выхода машин из строя. Также произведено сравнение решения методом Монте-Карло с решением методом Рунге - Кутта. Все результаты отражены в таблицах.
AB - Монте-Карло к решению задачи Коши для больших систем линейных дифференциальных уравнений. В первой части статьи дается краткий обзор уже известных результатов применения метода для решения интегральных уравнений Фредгольма. В основной части статьи разбирается применение подхода к системе линейных ОДУ, которая приводится к эквивиалентной системе интегральных уравнений Вольтерра. Это позволяет снять ограничения, связанные со сходимостью мажорантного процесса. Формулируются следующие ключевые теоремы. Теорема 1 указывает требуемые условия согласования, которым должны отвечать переходная и начальная плотности распределения, инициирующие соответствующую цепь Маркова, для которой выполняется равенство между математическим ожиданием оценки и интересующим нас функционалом. Теорема 2 формулирует выражение для дисперсии оценки, в то время как теорема 3 указывает параметры цепи Маркова, минимизирующие значение дисперсии для оценки функционала. В работе приводятся доказательства всех трех теорем. В практической части предложенный метод применяется к системе линейных ОДУ, описывающих замкнутую систему массового обслуживания из десяти условных машин и семи условных рабочих. Решение приводится как для системы с постоянной матрицей коэффициентов, так и для системы с переменной матрицей, где в зависимости от времени меняется интенсивноcть выхода машин из строя. Также произведено сравнение решения методом Монте-Карло с решением методом Рунге - Кутта. Все результаты отражены в таблицах.
UR - https://math-mech-astr-journal.spbu.ru/article/view/10900
M3 - статья
VL - 8
SP - 37
EP - 38
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
SN - 1025-3106
IS - 1
ER -
ID: 86618217