Рассматриваются плохо обусловленные системы линейных алгебраических уравнений (СЛАУ) и интегральные уравнения первого рода, относящиеся к классу некорректных задач. Сюда же относится задача обращения интегрального преобразования Лапласа, применяемого для решения широкого класса математических задач. Интегральные уравнения сводятся к СЛАУ со специальными матрицами. Для получения надежного решения используют методы регуляризации. Общей стратегией является использование стабилизатора Тихонова или его модификаций, либо представление искомого решения в виде ортогональной суммы двух векторов, один из которых определяется устойчиво, а для поиска второго необходима некая процедура стабилизации. В настоящей статье рассматриваются методы численного решения СЛАУ с положительно определенной симметричной матрицей или с матрицей осцилляционного типа с использованием регуляризации, приводящие к СЛАУ с уменьшенным числом обусловленности. Указан метод сведения задачи обращения интегрального преобразования Лапласа к СЛАУ с обобщенными матрицами Вандермонда осцилляционного типа, регуляризация которых снижает плохую обусловленность системы.
Язык оригиналарусский
Страницы (с-по) 593-599
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
Том8(66)
Номер выпуска4
СостояниеОпубликовано - 2021

    Области исследований

  • система линейных алгебраических уравнений, интегральные уравнения первого рода, некорректные задачи, плохо обусловленные задачи, число обусловленности, метод регуляризации

ID: 90623077