Проблеме учета ограничений в задачах математического программирования было уделено
много внимания. Во многих случаях ее решали с помощью штрафных функций. В настоящее время идея точных штрафов хорошо разработана и широко используется. Подход, основанный на точном штрафе, наиболее интересен и изящен, но он приводит к необходимости решать негладкую задачу оптимизации, даже если исходная задача является гладкой. Однако
прогресс в области численных методов недифференцируемой безусловной оптимизации, достигнутый в последние годы, дает некоторую надежду, что эти трудности будут преодолены.
Ранее теория точных штрафов была применена к исследованию одного класса задач управления, в которых управления были просто параметрами системы дифференциальных уравнений, описывающей поведение некоторого управляемого объекта. В статье рассматривается задача наблюдения. Система дифференциальных уравнений считается ограничениями. Показано, как можно их убрать, вводя соответствующую штрафную функцию. Получающийся новый функционал –