Результаты исследований: Научные публикации в периодических изданиях › статья в журнале по материалам конференции › Рецензирование
Infection with tropical parasitic diseases, according to WHO, has a huge impact on the health of more than 40 million people worldwide and is the second leading cause of immunodeficiency. The number of infections is influenced by many factors - climatic, demographic, vegetation cover and a number of others. The article presents a study and an assessment of the degree of influence of each of these factors, as well as a comparison of the quality of forecasting by separate methods of geo-informational analysis and machine learning and the possibility of their ensemble.
| Переведенное название | Forecasting the distribution of diseases in tropical zones using machine learning methods |
|---|---|
| Язык оригинала | русский |
| Страницы (с-по) | 371-376 |
| Число страниц | 6 |
| Журнал | CEUR Workshop Proceedings |
| Том | 2534 |
| Состояние | Опубликовано - 12 янв 2020 |
| Событие | 2019 All-Russian Conference "Spatial Data Processing for Monitoring of Natural and Anthropogenic Processes", SDM 2019 - Berdsk, Российская Федерация Продолжительность: 26 авг 2019 → 30 авг 2019 |
ID: 76310193