Infection with tropical parasitic diseases, according to WHO, has a huge impact on the health of more than 40 million people worldwide and is the second leading cause of immunodeficiency. The number of infections is influenced by many factors - climatic, demographic, vegetation cover and a number of others. The article presents a study and an assessment of the degree of influence of each of these factors, as well as a comparison of the quality of forecasting by separate methods of geo-informational analysis and machine learning and the possibility of their ensemble.

Переведенное названиеForecasting the distribution of diseases in tropical zones using machine learning methods
Язык оригиналарусский
Страницы (с-по)371-376
Число страниц6
ЖурналCEUR Workshop Proceedings
Том2534
СостояниеОпубликовано - 12 янв 2020
Событие2019 All-Russian Conference "Spatial Data Processing for Monitoring of Natural and Anthropogenic Processes", SDM 2019 - Berdsk, Российская Федерация
Продолжительность: 26 авг 201930 авг 2019

    Области исследований

  • Fever, Geostatistics, Machine learning, Neural networks, Tropical diseases

    Предметные области Scopus

  • Компьютерные науки (все)

ID: 76310193