Рассматривается диффеоморфизм плоскости в себя с неподвижной гиперболической точкой, предполагается наличие нетрансверсальной гомоклинической точки. Устойчивое и неустойчивое многообразия касаются друг друга в гомоклинической точке, существуют различные способы касания устойчивого и неустойчивого многообразий. В работах Ш.Ньюхауса, Л.П.Шильникова и других авторов изучались диффеоморфизмы плоскости с нетрансверсальной гомоклинической точкой, в предположении, что эта точка является точкой касания конечного порядка. Из работ этих авторов следует, что в окрестности гомоклинической точки может лежать бесконечное множество устойчивых периодических точек, наличие такого множества зависит от свойств гиперболической точки. В данной работе предполагается, что гомоклиническая точка не является точкой, в которой касание устойчивого и неустойчивого многообразия является касанием конечного порядка. Выделяют счетное число видов периодических точек, лежащих в окрестности гомоклинической точки; точки, принадлежащие одному виду, называются n-обходными, где n - натуральное число. В предлагаемой работе показано, что в случае если касание не является касанием конечного порядка, окрестность нетрансверсальной гомоклинической точки может содержать бесконечное множество устойчивых однобходных, двухобходных или трехобходных периодических точек с отделенными от нуля характеристическими показателями.