Standard

Метод моментов в задаче обращения преобразования Лапласа и его регуляризация. / Рябов, Виктор Михайлович; Лебедева, Анастасия Владимировна.

в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ, Том 9(67), № 1, 2022, стр. 46-52.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Рябов, ВМ & Лебедева, АВ 2022, 'Метод моментов в задаче обращения преобразования Лапласа и его регуляризация', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ, Том. 9(67), № 1, стр. 46-52. https://doi.org/10.21638/spbu01.2022.105

APA

Рябов, В. М., & Лебедева, А. В. (2022). Метод моментов в задаче обращения преобразования Лапласа и его регуляризация. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ, 9(67)(1), 46-52. https://doi.org/10.21638/spbu01.2022.105

Vancouver

Рябов ВМ, Лебедева АВ. Метод моментов в задаче обращения преобразования Лапласа и его регуляризация. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ. 2022;9(67)(1):46-52. https://doi.org/10.21638/spbu01.2022.105

Author

Рябов, Виктор Михайлович ; Лебедева, Анастасия Владимировна. / Метод моментов в задаче обращения преобразования Лапласа и его регуляризация. в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ. 2022 ; Том 9(67), № 1. стр. 46-52.

BibTeX

@article{98311f0bd0e24d94aa3c59168b8713f0,
title = "Метод моментов в задаче обращения преобразования Лапласа и его регуляризация",
abstract = "Integral equations of the first kind are considered, which belong to the class of ill-posed problems. This also includes the problem of inverting the integral Laplace transform, which is used to solve a wide class of mathematical problems. Integral equations are reduced to illconditioned systems of linear algebraic equations, in which the unknowns are the coefficients of the expansion in a series in the shifted Legendre polynomials of some function that simply expresses in terms of the sought original. This function is found as a solution to a certain finite moment problem in a Hilbert space. To obtain a reliable solution to the system, regularization methods are used. The general strategy is to use the Tikhonov stabilizer or its modifications. A specific type of stabilizer in the regularization method is indicated, focused on a priori low degree of smoothness of the desired original. The results of numerical experiments are presented, confirming the effectiveness of the proposed inversion algorithm.",
author = "Рябов, {Виктор Михайлович} and Лебедева, {Анастасия Владимировна}",
year = "2022",
doi = "10.21638/spbu01.2022.105",
language = "русский",
volume = "9(67)",
pages = "46--52",
journal = "ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ",
issn = "1025-3106",
publisher = "Издательство Санкт-Петербургского университета",
number = "1",

}

RIS

TY - JOUR

T1 - Метод моментов в задаче обращения преобразования Лапласа и его регуляризация

AU - Рябов, Виктор Михайлович

AU - Лебедева, Анастасия Владимировна

PY - 2022

Y1 - 2022

N2 - Integral equations of the first kind are considered, which belong to the class of ill-posed problems. This also includes the problem of inverting the integral Laplace transform, which is used to solve a wide class of mathematical problems. Integral equations are reduced to illconditioned systems of linear algebraic equations, in which the unknowns are the coefficients of the expansion in a series in the shifted Legendre polynomials of some function that simply expresses in terms of the sought original. This function is found as a solution to a certain finite moment problem in a Hilbert space. To obtain a reliable solution to the system, regularization methods are used. The general strategy is to use the Tikhonov stabilizer or its modifications. A specific type of stabilizer in the regularization method is indicated, focused on a priori low degree of smoothness of the desired original. The results of numerical experiments are presented, confirming the effectiveness of the proposed inversion algorithm.

AB - Integral equations of the first kind are considered, which belong to the class of ill-posed problems. This also includes the problem of inverting the integral Laplace transform, which is used to solve a wide class of mathematical problems. Integral equations are reduced to illconditioned systems of linear algebraic equations, in which the unknowns are the coefficients of the expansion in a series in the shifted Legendre polynomials of some function that simply expresses in terms of the sought original. This function is found as a solution to a certain finite moment problem in a Hilbert space. To obtain a reliable solution to the system, regularization methods are used. The general strategy is to use the Tikhonov stabilizer or its modifications. A specific type of stabilizer in the regularization method is indicated, focused on a priori low degree of smoothness of the desired original. The results of numerical experiments are presented, confirming the effectiveness of the proposed inversion algorithm.

UR - https://www.mendeley.com/catalogue/3febb0f6-8ec5-3072-aba4-8236f167b987/

U2 - 10.21638/spbu01.2022.105

DO - 10.21638/spbu01.2022.105

M3 - статья

VL - 9(67)

SP - 46

EP - 52

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ

SN - 1025-3106

IS - 1

ER -

ID: 95434843