Рассмотрена плоская задача теории упругости о полуплоскости с бесконечным периодическим рядом конгруэнтных отверстий произвольной формы. Предполагается, что к полуплоскости приложены усилия на бесконечности, периодическая нагрузка на прямолинейной кромке и на контуре вырезов. Внутри рассматриваемого тела расположены периодические сосредоточенные воздействия. Периоды всех систем считаются равными. Решение построено в терминах комплексных потенциалов Колосова-Мусхелишвили с помощью суперпозиции двух вспомогательных задач. Первая из них - это задача о сплошной полуплоскости (без отверстия), загруженной известными сосредоточенными особенностями, заданными усилиями на прямолинейной границе и на бесконечности. Вторая - задача о сплошной полуплоскости, находящейся под действием неизвестной нагрузки, которая подлежит определению. Результаты получены путем применения формул суммирования рядов. Найденное решение точно удовлетворяет краевым условиям на прямолинейной кромке полуплоскости и на бесконечности. Для контура в
Язык оригиналарусский
Страницы (с-по)118-128
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 10: ПРИКЛАДНАЯ МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ
Номер выпуска3
СостояниеОпубликовано - 2009

    Области исследований

  • сосредоточенные воздействия, плоская задача теории упругости, комплексные потенциалы, концентрация напряжений.

ID: 5076230