Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Влияние переменного диаметра молекул на коэффициент вязкости в поуровневом приближении. / Корниенко, О.В.; Кустова, Е.В.
в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 1: МАТЕМАТИКА, МЕХАНИКА, АСТРОНОМИЯ, Том 3(61), № 3, 2016, стр. 457-467.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Влияние переменного диаметра молекул на коэффициент вязкости в поуровневом приближении
AU - Корниенко, О.В.
AU - Кустова, Е.В.
N1 - Корниенко О. В., Кустова Е. В. Влияние переменного диаметра молекул на коэффициент вязкости в поуровневом приближении // Вестник Санкт-Петербургского университета. Серия 1. Математика. Механика. Астрономия. 2016. Т. 3 (61). Вып. 3. С. 457–467. DOI: 10.21638/11701/spbu01.2016.314
PY - 2016
Y1 - 2016
N2 - В работе изучается влияние переменного диаметра колебательно возбужденной молекулы на коэффициент сдвиговой вязкости в приближении поуровневой кинетики. Рассматриваются три модели для расчета диаметра молекул: Канга—Кунца, Морзе, Тица—Хуа. По ним рассчитываются диаметры молекул N2, O2, NO для разных колебательно-вращательных состояний. Показывается, что модель Канга—Кунца дает экспоненциальный рост диаметра молекулы для колебательных уровней выше 10, поэтому ее применение целесообразно только при низких температурах. Модели Тица—Хуа и Морзе дают близкие значения диаметров. Показывается также, что вкладом вращательного возбуждения в диаметр рассмотренных молекул можно пренебречь. Для разных значений потенциалов, температур, равновесных и неравновесных колебательных распределений рассчитывается отношение поуровневого коэффициента сдвиговой вязкости к коэффициенту вязкости для газа, состоящего из невозбужденных молекул. Во всех рассмотренных случаях эффект увеличения молекулы с ростом колебательного уровня практически не влияет на вязкость, отклонение не превышает 7%. Таким образом доказывается справедливость предположения о том, что при расчете поуровневых коэффициентов переноса зависимость сечения упругого столкновения от колебательного состояния можно не учитывать. Это позволяет обоснованно применять упрощенные алгоритмы расчета коэффициентов переноса в приближении поуровневой кинетики, заметно сокращающие требования к вычислительным ресурсам при решении задач неравновесной газовой динамики. Библиогр. 16 назв. Ил. 5. Табл. 6.
AB - В работе изучается влияние переменного диаметра колебательно возбужденной молекулы на коэффициент сдвиговой вязкости в приближении поуровневой кинетики. Рассматриваются три модели для расчета диаметра молекул: Канга—Кунца, Морзе, Тица—Хуа. По ним рассчитываются диаметры молекул N2, O2, NO для разных колебательно-вращательных состояний. Показывается, что модель Канга—Кунца дает экспоненциальный рост диаметра молекулы для колебательных уровней выше 10, поэтому ее применение целесообразно только при низких температурах. Модели Тица—Хуа и Морзе дают близкие значения диаметров. Показывается также, что вкладом вращательного возбуждения в диаметр рассмотренных молекул можно пренебречь. Для разных значений потенциалов, температур, равновесных и неравновесных колебательных распределений рассчитывается отношение поуровневого коэффициента сдвиговой вязкости к коэффициенту вязкости для газа, состоящего из невозбужденных молекул. Во всех рассмотренных случаях эффект увеличения молекулы с ростом колебательного уровня практически не влияет на вязкость, отклонение не превышает 7%. Таким образом доказывается справедливость предположения о том, что при расчете поуровневых коэффициентов переноса зависимость сечения упругого столкновения от колебательного состояния можно не учитывать. Это позволяет обоснованно применять упрощенные алгоритмы расчета коэффициентов переноса в приближении поуровневой кинетики, заметно сокращающие требования к вычислительным ресурсам при решении задач неравновесной газовой динамики. Библиогр. 16 назв. Ил. 5. Табл. 6.
KW - диаметр молекулы
KW - возбужденное колебательное состояние
KW - поуровневыйкоэффициент сдвиговой вязкости.
KW - molecular diameter
KW - vibrational excited state
KW - state-to-state shear viscosity coefficient
UR - http://vestnik.spbu.ru/html16/s01/s01v3/14.pdf
U2 - 10.21638/11701/spbu01.2016.314
DO - 10.21638/11701/spbu01.2016.314
M3 - статья
VL - 3(61)
SP - 457
EP - 467
JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
SN - 1025-3106
IS - 3
ER -
ID: 7595240