Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Усреднение уравнений типа Шрёдингера: операторные оценки при учете корректоров. / Суслина, Татьяна Александровна.
в: ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ЕГО ПРИЛОЖЕНИЯ, Том 56, № 3, 2022, стр. 93-99.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Усреднение уравнений типа Шрёдингера: операторные оценки при учете корректоров
AU - Суслина, Татьяна Александровна
N1 - Т. А. Суслина, “Усреднение уравнений типа Шрёдингера: операторные оценки при учете корректоров”, Функц. анализ и его прил., 56:3 (2022), 93–99
PY - 2022
Y1 - 2022
N2 - В $L_2(\mathbb{R}^d;\mathbb{C}^n)$ рассматривается самосопряженный эллиптический дифференциальный оператор $A_\varepsilon$ второго порядка. Предполагается, что коэффициенты оператора $A_\varepsilon$ периодичны и зависят от $\mathbf x/\varepsilon$, где $\varepsilon>0$ - малый параметр. Изучается поведение операторной экспоненты $e^{-iA_\varepsilon\tau}$ при малом $\varepsilon$ и $\tau\in\mathbb{R}$. Результаты применяются к исследованию поведения решения задачи Коши для уравнения типа Шрeдингера $i\partial_\tau \mathbf{u}_\varepsilon(\mathbf x,\tau)=-(A_\varepsilon{\mathbf u}_\varepsilon)(\mathbf x,\tau)$ с начальными данными из специального класса. При фиксированном $\tau$ и $\varepsilon\to0$ решение ${\mathbf u}_\varepsilon(\cdot,\tau)$ сходится в $L_2(\mathbb{R}^d;\mathbb{C}^n)$ к решению усредненной задачи; погрешность имеет порядок $O(\varepsilon)$. Получены аппроксимации решения ${\mathbf u}_\varepsilon(\cdot,\tau)$ в $L_2(\mathbb{R}^d;\mathbb{C}^n)$ с погрешностью $O(\varepsilon^2)$ и в $H^1(\mathbb{R}^d;\mathbb{C}^n)$ с погрешностью $O(\varepsilon)$. В этих аппроксимациях учитываются корректоры. Отслежена зависимость погрешностей от $\tau$.
AB - В $L_2(\mathbb{R}^d;\mathbb{C}^n)$ рассматривается самосопряженный эллиптический дифференциальный оператор $A_\varepsilon$ второго порядка. Предполагается, что коэффициенты оператора $A_\varepsilon$ периодичны и зависят от $\mathbf x/\varepsilon$, где $\varepsilon>0$ - малый параметр. Изучается поведение операторной экспоненты $e^{-iA_\varepsilon\tau}$ при малом $\varepsilon$ и $\tau\in\mathbb{R}$. Результаты применяются к исследованию поведения решения задачи Коши для уравнения типа Шрeдингера $i\partial_\tau \mathbf{u}_\varepsilon(\mathbf x,\tau)=-(A_\varepsilon{\mathbf u}_\varepsilon)(\mathbf x,\tau)$ с начальными данными из специального класса. При фиксированном $\tau$ и $\varepsilon\to0$ решение ${\mathbf u}_\varepsilon(\cdot,\tau)$ сходится в $L_2(\mathbb{R}^d;\mathbb{C}^n)$ к решению усредненной задачи; погрешность имеет порядок $O(\varepsilon)$. Получены аппроксимации решения ${\mathbf u}_\varepsilon(\cdot,\tau)$ в $L_2(\mathbb{R}^d;\mathbb{C}^n)$ с погрешностью $O(\varepsilon^2)$ и в $H^1(\mathbb{R}^d;\mathbb{C}^n)$ с погрешностью $O(\varepsilon)$. В этих аппроксимациях учитываются корректоры. Отслежена зависимость погрешностей от $\tau$.
KW - периодические дифференциальные операторы
KW - усреднение
KW - операторные оценки погрешности
KW - уравнения типа Шрёдингера
UR - http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=faa&paperid=4019&option_lang=rus
UR - https://www.mendeley.com/catalogue/ffc61dac-283f-38da-8e9c-2c35ab706ef1/
U2 - 10.4213/faa4019
DO - 10.4213/faa4019
M3 - статья
VL - 56
SP - 93
EP - 99
JO - ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ЕГО ПРИЛОЖЕНИЯ
JF - ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ЕГО ПРИЛОЖЕНИЯ
SN - 0374-1990
IS - 3
ER -
ID: 100093121