Работа посвящена трёхмерным аналогам плоских задач равномерной аппроксимации рациональными функциями. Эти аналоги относятся к аппроксимационным свойствам гармонических (т. е. безвихревых и соленоидальных) векторных полей. Наряду с обычной постановкой (равномерная аппроксимация поля, непрерывного на компактном множестве, полями, гармоническими вблизи этого множества) рассматривается "почти гармоническая" аппроксимация, когда гармоничность приближающего поля заменяется произвольной малостью его вихря и дивергенции. Аналогичная "плоская" модификация классической задачи аппроксимации функциями, аналитическими вблизи данного плоского компакта, равносильна задаче "почти аналитической" аппроксимации. Показано, что трёхмерные задачи гармонической и почти гармонической аппроксимации не равносильны. При этом первая задача (в отличие от плоского случая) нелокальна, а вторая -- локальна: для неё справедлив трёхмерный аналог известной теоремы Бишопа о локальности алгебры $R(K)$. Наряду с аппроксимационными свойствами гарм
Язык оригиналарусский
Страницы (с-по)58-84
ЖурналЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН
Том389
СостояниеОпубликовано - 2011

    Области исследований

  • гармоническое векторное поле, равномерная аппроксимация, соленоидальные векторные заряды

ID: 5248015