Standard

Одноранговая аппроксимация положительных матриц с использованием методов идемпотентной математики. / Кривулин, Николай Кимович; Романова, Елизавета Юрьевна.

International Scientific Conference, 13-16 December, 2017, Borovets, Bulgaria. Mathematical Modeling: Technological and Socio-Economic Processes. Proceedings. Том 1 Sofia : Scientific Technical Union of Mechanical Engineering «INDUSTRY 4.0», 2017. стр. 33-35 (International Scientific Conference. Mathematical Modeling.).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Кривулин, НК & Романова, ЕЮ 2017, Одноранговая аппроксимация положительных матриц с использованием методов идемпотентной математики. в International Scientific Conference, 13-16 December, 2017, Borovets, Bulgaria. Mathematical Modeling: Technological and Socio-Economic Processes. Proceedings. Том. 1, International Scientific Conference. Mathematical Modeling., Scientific Technical Union of Mechanical Engineering «INDUSTRY 4.0», Sofia, стр. 33-35, International Scientific Conference “Mathematical Modeling”
, Sofia, Болгария, 13/12/17.

APA

Кривулин, Н. К., & Романова, Е. Ю. (2017). Одноранговая аппроксимация положительных матриц с использованием методов идемпотентной математики. в International Scientific Conference, 13-16 December, 2017, Borovets, Bulgaria. Mathematical Modeling: Technological and Socio-Economic Processes. Proceedings (Том 1, стр. 33-35). (International Scientific Conference. Mathematical Modeling.). Scientific Technical Union of Mechanical Engineering «INDUSTRY 4.0».

Vancouver

Кривулин НК, Романова ЕЮ. Одноранговая аппроксимация положительных матриц с использованием методов идемпотентной математики. в International Scientific Conference, 13-16 December, 2017, Borovets, Bulgaria. Mathematical Modeling: Technological and Socio-Economic Processes. Proceedings. Том 1. Sofia: Scientific Technical Union of Mechanical Engineering «INDUSTRY 4.0». 2017. стр. 33-35. (International Scientific Conference. Mathematical Modeling.).

Author

Кривулин, Николай Кимович ; Романова, Елизавета Юрьевна. / Одноранговая аппроксимация положительных матриц с использованием методов идемпотентной математики. International Scientific Conference, 13-16 December, 2017, Borovets, Bulgaria. Mathematical Modeling: Technological and Socio-Economic Processes. Proceedings. Том 1 Sofia : Scientific Technical Union of Mechanical Engineering «INDUSTRY 4.0», 2017. стр. 33-35 (International Scientific Conference. Mathematical Modeling.).

BibTeX

@inproceedings{41f4efedee6d4828b1d89d543d1fceea,
title = "Одноранговая аппроксимация положительных матриц с использованием методов идемпотентной математики",
abstract = "Low-rank matrix approximation is widely used in the analysis of big data, in recommendation systems in the Internet, for approximation solution of some equations in mechanics, and other fields. In many applications it makes sense to use matrices of unit rank for approximating since they have the simplest structure. This article provides a method for approximating positive matrices by matrices of unit rank based on the minimization of log-Chebyshev distance. The approximation problem is reduced to the optimization problem, which has a compact representation in terms of an idempotent semifield that taking maximum in the role of addition. Such semifield is often called the max-algebra. The necessary definitions and results of tropical mathematics are given and the solution of the optimization problem is derived from them. Then the solution is represented in terms of the original approximation problem. As a result, all the positive matrices which provide the minimum of approximation error are obtained in explicit form.",
keywords = "idempotent mathematics, tropical mathematics, idempotent semifield, rank-one matrix approximation, log-Chebyshev distance",
author = "Кривулин, {Николай Кимович} and Романова, {Елизавета Юрьевна}",
note = "Кривулин Н. К., Романова Е. Ю. Одноранговая аппроксимация положительных матриц с использованием методов идемпотентной математики // International Scientific Conference, 13-16 December, 2017, Borovets, Bulgaria. Mathematical Modeling. Technological and Socio-Economic Processes. Proceedings. Sofia: Scientific-Technical Union of Mechanical Engineering “INDUSTRY 4.0”, 2017. P. 33-35.; International Scientific Conference “Mathematical Modeling”<br/>, MATHMODEL{\textquoteright} 17 ; Conference date: 13-12-2017 Through 16-12-2017",
year = "2017",
language = "русский",
volume = "1",
series = "International Scientific Conference. Mathematical Modeling.",
publisher = "Scientific Technical Union of Mechanical Engineering «INDUSTRY 4.0»",
pages = "33--35",
booktitle = "International Scientific Conference, 13-16 December, 2017, Borovets, Bulgaria. Mathematical Modeling",
address = "Болгария",
url = "http://www.mathmodel.eu",

}

RIS

TY - GEN

T1 - Одноранговая аппроксимация положительных матриц с использованием методов идемпотентной математики

AU - Кривулин, Николай Кимович

AU - Романова, Елизавета Юрьевна

N1 - Кривулин Н. К., Романова Е. Ю. Одноранговая аппроксимация положительных матриц с использованием методов идемпотентной математики // International Scientific Conference, 13-16 December, 2017, Borovets, Bulgaria. Mathematical Modeling. Technological and Socio-Economic Processes. Proceedings. Sofia: Scientific-Technical Union of Mechanical Engineering “INDUSTRY 4.0”, 2017. P. 33-35.

PY - 2017

Y1 - 2017

N2 - Low-rank matrix approximation is widely used in the analysis of big data, in recommendation systems in the Internet, for approximation solution of some equations in mechanics, and other fields. In many applications it makes sense to use matrices of unit rank for approximating since they have the simplest structure. This article provides a method for approximating positive matrices by matrices of unit rank based on the minimization of log-Chebyshev distance. The approximation problem is reduced to the optimization problem, which has a compact representation in terms of an idempotent semifield that taking maximum in the role of addition. Such semifield is often called the max-algebra. The necessary definitions and results of tropical mathematics are given and the solution of the optimization problem is derived from them. Then the solution is represented in terms of the original approximation problem. As a result, all the positive matrices which provide the minimum of approximation error are obtained in explicit form.

AB - Low-rank matrix approximation is widely used in the analysis of big data, in recommendation systems in the Internet, for approximation solution of some equations in mechanics, and other fields. In many applications it makes sense to use matrices of unit rank for approximating since they have the simplest structure. This article provides a method for approximating positive matrices by matrices of unit rank based on the minimization of log-Chebyshev distance. The approximation problem is reduced to the optimization problem, which has a compact representation in terms of an idempotent semifield that taking maximum in the role of addition. Such semifield is often called the max-algebra. The necessary definitions and results of tropical mathematics are given and the solution of the optimization problem is derived from them. Then the solution is represented in terms of the original approximation problem. As a result, all the positive matrices which provide the minimum of approximation error are obtained in explicit form.

KW - idempotent mathematics

KW - tropical mathematics

KW - idempotent semifield

KW - rank-one matrix approximation

KW - log-Chebyshev distance

UR - http://www.mathmodel.eu/sbornik/1-2017.pdf

M3 - статья в сборнике материалов конференции

VL - 1

T3 - International Scientific Conference. Mathematical Modeling.

SP - 33

EP - 35

BT - International Scientific Conference, 13-16 December, 2017, Borovets, Bulgaria. Mathematical Modeling

PB - Scientific Technical Union of Mechanical Engineering «INDUSTRY 4.0»

CY - Sofia

T2 - International Scientific Conference “Mathematical Modeling”<br/>

Y2 - 13 December 2017 through 16 December 2017

ER -

ID: 41327805