В линейном приближении исследуются свободные колебания и плоские волны в тонкой упругой анизотропной бесконечной пластине постоянной толщины. Рассматривается анизотропия общего вида, описываемая 21 модулем упругости. Предполагается, что модули упругости и плотность не зависят от тангенциальных координат, но могут зависеть от координаты по толщине пластины. Многослойные и функционально градиентные пластины не исключаются из рассмотрения. В предположении, что длина волны существенно превосходит толщину пластины, построено асимптотическое разложение по степеням малого параметра толщины гармонического по тангенциальным координатам решения системы трехмерных уравнений теории упругости. При фиксированных значениях волновых чисел существуют только три длинноволновых решения: одно изгибное низкочастотное и два тангенциальных. С точностью до членов второго порядка малости по безразмерной толщине построены дисперсионные уравнения для этих решений. Для изгибных решений характерна сильная зависимость частоты от длины волны, а тангенциальные волны распространяются с малой дисперсией. Рассмотрены частные виды анизотропии.