Изучается система из двух эллиптических уравнений с разрывными нелинейностями и однородными граничными условиями Дирихле. Вариационным методом получены теоремы существования сильных и полуправильных решений. Сильное решение называется полуправильным, если мера множества, на котором значения решения являются точками разрыва нелинейности по фазовой переменной, равна нулю. Выделены классы нелинейностей, для которых выполняются условия доказанных теорем. Вариационный подход в настоящей работе базируется на понятии квазипотенциального оператора, в отличие от традиционного, где используется обобщенный градиент Кларка.