DOI

In this article, we study the spatial market equilibrium in the case of fixed demands and supply values, the requirement of equality in regard to overall supply and overall demand, and linear transportation costs. The problem is formulated as a nonlinear optimization program with dual variables reflecting supply and demand prices. It is shown that the unique equilibrium commodity assignment pattern is obtained explicitly via equilibrium prices. Moreover, it is proved that in order to obtain absolute values of equilibrium prices, it is necessary to establish a certain base market price. Therefore, once the base market price is given, then other prices are adjusted according to spatial market equilibrium.

Переведенное названиеSpatial market equilibrium in the case of linear transportation costs
Язык оригиналарусский
Страницы (с-по)447-454
Число страниц8
ЖурналVestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya
Том16
Номер выпуска4
DOI
СостояниеОпубликовано - дек 2020
СобытиеStability and Control Processes: International Conference Dedicated to the Memory of Professor Vladimir Zubov - Санкт-Петербургский Государственный Университет, Saint Petersburg, Российская Федерация
Продолжительность: 5 окт 20209 окт 2020
Номер конференции: 4
http://www.apmath.spbu.ru/scp2020/
http://www.apmath.spbu.ru/scp2020/ru/main/
http://www.apmath.spbu.ru/scp2020/eng/program/#schedule
https://link.springer.com/conference/scp

    Предметные области Scopus

  • Компьютерные науки (все)
  • Теория оптимизации
  • Прикладная математика

    Области исследований

  • Karush—Kuhn—Tucker conditions, Multipliers of Lagrange, Non-linear optimization, Spatial market equilibrium

ID: 74602385