Задачи теории упругости для композитных материалов с отверстиями и включениями имеют большое практическое значение для механики, физики и других областей науки. Вработе получено аналитическое решение плоской задачи (плоская деформация или плоское напряженное состояние) для неоднородной пластины с эллиптическим отверстием. Пластина образована соединением двух полуплоскостей из разных материалов, отверстие расположено целиком в нижней полуплоскости. На бесконечности пластины известны напряжения и углы поворота, на границе отверстия задана внешняя нагрузка. Для решения задачи использованы методы комплексных потенциалов Колосова–Мусхелишвили, конформных отображений и суперпозиции. Близость отверстия к границе раздела сред оказывает существенное влияние на величину напряжений как в окрестности отверстия, так и на линии раздела. Для инженерных приложений важно знать поля напряжений и перемещений, чтобы оценить влияние отверстия на прочность соединения материалов. Из общего решения рассмотренной задачи вытекают как частные случаи решения задач об эллиптическом отверстии в полуплоскости, о наклонной трещине в двухкомпонентной плоскости и полуплоскости и ряд других. Выполнены расчеты напряжений на линии раздела для различных параметров упругости полуплоскостей, исследовано влияние близости отверстия на величину этих напряжений. Библиогр. 19 назв. Ил. 2.
Переведенное названиеINTERACTION OF AN ELLIPTIC HOLE WITH AN INTERFACE OF TWO BONDED HALF-PLANES
Язык оригиналарусский
Страницы (с-по)73-87
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. СЕРИЯ 10: ПРИКЛАДНАЯ МАТЕМАТИКА, ИНФОРМАТИКА, ПРОЦЕССЫ УПРАВЛЕНИЯ
Том12
Номер выпуска3
СостояниеОпубликовано - 2016

    Области исследований

  • кусочно неоднородная пластина, плоская задача упругости, эллиптическое отверстие, метод комплексных функций

ID: 7604144