Standard

Уравнение Гамильтона-Якоби-Беллмана в дифференциальных играх со случайной продолжительностью. / Шевкопляс, Е.В.

в: УПРАВЛЕНИЕ БОЛЬШИМИ СИСТЕМАМИ: СБОРНИК ТРУДОВ, № 26-1, 2009, стр. 385-408.

Результаты исследований: Научные публикации в периодических изданияхстатья

Harvard

APA

Vancouver

Author

BibTeX

@article{91a16b8fc4784616a3f4a04bcd45fd25,
title = "Уравнение Гамильтона-Якоби-Беллмана в дифференциальных играх со случайной продолжительностью",
abstract = "The class of differential games with random duration is studied. It turns out that the problem with random duration of the game can be simplified to the standard problem with infinite time horizon. The Hamilton-Jacobi-Bellman equation which help us to find the optimal solution under condition of random duration of the processes is derived. The results are illustrated with a game-theoretical model of non-renewable resource extraction. The problem is analyzed under condition of Weibull distribution for the random terminal time of the game.",
author = "Е.В. Шевкопляс",
year = "2009",
language = "русский",
pages = "385--408",
journal = "УПРАВЛЕНИЕ БОЛЬШИМИ СИСТЕМАМИ: СБОРНИК ТРУДОВ",
issn = "1819-2440",
publisher = "Институт проблем управления им. В.А. Трапезникова РАН",
number = "26-1",

}

RIS

TY - JOUR

T1 - Уравнение Гамильтона-Якоби-Беллмана в дифференциальных играх со случайной продолжительностью

AU - Шевкопляс, Е.В.

PY - 2009

Y1 - 2009

N2 - The class of differential games with random duration is studied. It turns out that the problem with random duration of the game can be simplified to the standard problem with infinite time horizon. The Hamilton-Jacobi-Bellman equation which help us to find the optimal solution under condition of random duration of the processes is derived. The results are illustrated with a game-theoretical model of non-renewable resource extraction. The problem is analyzed under condition of Weibull distribution for the random terminal time of the game.

AB - The class of differential games with random duration is studied. It turns out that the problem with random duration of the game can be simplified to the standard problem with infinite time horizon. The Hamilton-Jacobi-Bellman equation which help us to find the optimal solution under condition of random duration of the processes is derived. The results are illustrated with a game-theoretical model of non-renewable resource extraction. The problem is analyzed under condition of Weibull distribution for the random terminal time of the game.

M3 - статья

SP - 385

EP - 408

JO - УПРАВЛЕНИЕ БОЛЬШИМИ СИСТЕМАМИ: СБОРНИК ТРУДОВ

JF - УПРАВЛЕНИЕ БОЛЬШИМИ СИСТЕМАМИ: СБОРНИК ТРУДОВ

SN - 1819-2440

IS - 26-1

ER -

ID: 5151564