Standard

РАЗВЕТВЛЯЮЩАЯСЯ ПЕРИОДИЧНОСТЬ: ОСРЕДНЕНИЕ ЗАДАЧИ ДИРИХЛЕ ДЛЯ ЭЛЛИПТИЧЕСКОЙ СИСТЕМЫ. / Назаров, С.А.; Слуцкий, А.С.

в: ДОКЛАДЫ АКАДЕМИИ НАУК, Том 397, № 6, 01.12.2004, стр. 743-747.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{0a9a2a8ae6324809a9ffcaf79836e2b5,
title = "РАЗВЕТВЛЯЮЩАЯСЯ ПЕРИОДИЧНОСТЬ: ОСРЕДНЕНИЕ ЗАДАЧИ ДИРИХЛЕ ДЛЯ ЭЛЛИПТИЧЕСКОЙ СИСТЕМЫ",
abstract = "For the posed boundary value problem corresponding to geometric structure represented by a rectangle regularly parted in one direction a formal asymptotics is constructed and substantiated using modification of the standard in homogenization theory asymptotic ansatz in accordance with asymptotic procedures maintaining thin domains.",
author = "С.А. Назаров and А.С. Слуцкий",
year = "2004",
month = dec,
day = "1",
language = "русский",
volume = "397",
pages = "743--747",
journal = "ДОКЛАДЫ АКАДЕМИИ НАУК",
issn = "0869-5652",
publisher = "Издательство {"}Наука{"}",
number = "6",

}

RIS

TY - JOUR

T1 - РАЗВЕТВЛЯЮЩАЯСЯ ПЕРИОДИЧНОСТЬ: ОСРЕДНЕНИЕ ЗАДАЧИ ДИРИХЛЕ ДЛЯ ЭЛЛИПТИЧЕСКОЙ СИСТЕМЫ

AU - Назаров, С.А.

AU - Слуцкий, А.С.

PY - 2004/12/1

Y1 - 2004/12/1

N2 - For the posed boundary value problem corresponding to geometric structure represented by a rectangle regularly parted in one direction a formal asymptotics is constructed and substantiated using modification of the standard in homogenization theory asymptotic ansatz in accordance with asymptotic procedures maintaining thin domains.

AB - For the posed boundary value problem corresponding to geometric structure represented by a rectangle regularly parted in one direction a formal asymptotics is constructed and substantiated using modification of the standard in homogenization theory asymptotic ansatz in accordance with asymptotic procedures maintaining thin domains.

UR - http://www.scopus.com/inward/record.url?scp=12244304911&partnerID=8YFLogxK

UR - https://elibrary.ru/item.asp?id=17354294

M3 - статья

AN - SCOPUS:12244304911

VL - 397

SP - 743

EP - 747

JO - ДОКЛАДЫ АКАДЕМИИ НАУК

JF - ДОКЛАДЫ АКАДЕМИИ НАУК

SN - 0869-5652

IS - 6

ER -

ID: 40991536