Standard

Ренормгруппа в теории турбулентности: Точно-решаемая модель Гейзенберга. / Аджемян, Л.Ц.; Антонов, Н.В.

в: ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА, Том 115, № 2, 1998, стр. 245-262.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Аджемян, ЛЦ & Антонов, НВ 1998, 'Ренормгруппа в теории турбулентности: Точно-решаемая модель Гейзенберга.', ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА, Том. 115, № 2, стр. 245-262.

APA

Vancouver

Author

Аджемян, Л.Ц. ; Антонов, Н.В. / Ренормгруппа в теории турбулентности: Точно-решаемая модель Гейзенберга. в: ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА. 1998 ; Том 115, № 2. стр. 245-262.

BibTeX

@article{d9d6a7d2c28f4642bad591b1b7fd6580,
title = "Ренормгруппа в теории турбулентности: Точно-решаемая модель Гейзенберга.",
abstract = "An exactly solvable Heisenberg model describing the spectral balance conditions for the energy of a turbulent liquid is investigated in the renormalization group (RG) framework. The model has RG symmetry with the exact RG functions (the ?-function and the anomalous dimension ?) found in two different renormalization schemes. The solution to the RG equations coincides with the known exact solution of the Heisenberg model and is compared with the results from the ? expansion, which is the only tool for describing more complex models of developed turbulence (the formal small parameter ? of the RG expansion is introduced by replacing a ?-function-like pumping function in the random force correlator by a powerlike function). The results, which are valid for asymptotically small ?, can be extrapolated to the actual value ? = 2, and the few first terms of the ? expansion already yield a reasonable numerical estimate for the Kolmogorov constant in the turbulence energy spectrum.",
author = "Л.Ц. Аджемян and Н.В. Антонов",
year = "1998",
language = "не определен",
volume = "115",
pages = "245--262",
journal = "ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА",
issn = "0564-6162",
publisher = "Математический институт им. В.А. Стеклова РАН",
number = "2",

}

RIS

TY - JOUR

T1 - Ренормгруппа в теории турбулентности: Точно-решаемая модель Гейзенберга.

AU - Аджемян, Л.Ц.

AU - Антонов, Н.В.

PY - 1998

Y1 - 1998

N2 - An exactly solvable Heisenberg model describing the spectral balance conditions for the energy of a turbulent liquid is investigated in the renormalization group (RG) framework. The model has RG symmetry with the exact RG functions (the ?-function and the anomalous dimension ?) found in two different renormalization schemes. The solution to the RG equations coincides with the known exact solution of the Heisenberg model and is compared with the results from the ? expansion, which is the only tool for describing more complex models of developed turbulence (the formal small parameter ? of the RG expansion is introduced by replacing a ?-function-like pumping function in the random force correlator by a powerlike function). The results, which are valid for asymptotically small ?, can be extrapolated to the actual value ? = 2, and the few first terms of the ? expansion already yield a reasonable numerical estimate for the Kolmogorov constant in the turbulence energy spectrum.

AB - An exactly solvable Heisenberg model describing the spectral balance conditions for the energy of a turbulent liquid is investigated in the renormalization group (RG) framework. The model has RG symmetry with the exact RG functions (the ?-function and the anomalous dimension ?) found in two different renormalization schemes. The solution to the RG equations coincides with the known exact solution of the Heisenberg model and is compared with the results from the ? expansion, which is the only tool for describing more complex models of developed turbulence (the formal small parameter ? of the RG expansion is introduced by replacing a ?-function-like pumping function in the random force correlator by a powerlike function). The results, which are valid for asymptotically small ?, can be extrapolated to the actual value ? = 2, and the few first terms of the ? expansion already yield a reasonable numerical estimate for the Kolmogorov constant in the turbulence energy spectrum.

M3 - статья

VL - 115

SP - 245

EP - 262

JO - ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА

JF - ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА

SN - 0564-6162

IS - 2

ER -

ID: 5088010