Ссылки

DOI

Основная область применения формальных групп - алгебраическая геометрия и теория полей классов. В последней используются как классический символ Гильберта (символ норменного вычета), так и его обобщения. Одна из важнейших задач - нахождение явных формул для различных модификаций данного символа, связанных с формальными группами. Заметим, что имеется два подхода к построению формальных групп (то есть степенных рядов, удовлетворяющих определенным условиям). Доказанная Хазевинкелем функциональная лемма позволяет составлять формальные группы с коэффициентами из кольца нулевой характеристики при помощи функциональных уравнений, использующих некий идеал этого кольца, надполе кольца и кольцевой гомоморфизм с заданными свойствами (например, тождественный, а для локального поля может быть выбран гомоморфизм Фробениуса). Есть удобный критерий изоморфности построенных по формуле Хазевинкеля формальных групп, а также формула для логарифмов (в частности, логарифма Артина - Хассе). В то же время у Любина с Тейтом формальны
Язык оригиналарусский
Страницы (с-по)245-253
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
Том7
Номер выпуска2
DOI
СостояниеОпубликовано - 2020

    Области исследований

  • formal groups, Hazewinkel classification, Hilbert symbol, local fields, классификация Хазевинкеля, локальные поля, символ Гильберта, формальные группы

ID: 78583013