Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Математическая теория рассеяния в электромагнитных волноводах. / Пламеневский, Борис Алексеевич; Порецкий, Александр Сергеевич; Сарафанов, Олег Васильевич.
в: Известия РАН. Серия математическая, Том 89, № 1, 01.2025, стр. 54-114.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Математическая теория рассеяния в электромагнитных волноводах
AU - Пламеневский, Борис Алексеевич
AU - Порецкий, Александр Сергеевич
AU - Сарафанов, Олег Васильевич
PY - 2025/1
Y1 - 2025/1
N2 - Волновод занимает трехмерную область $G$ с несколькими цилиндрическими выходами на бесконечность и описывается нестационарной системой Максвелла с идеально проводящими краевыми условиями. Предполагается, что диэлектрическая и магнитная проницаемости заполняющей среды - положительно определенные матрицы $\varepsilon(x)$ и $\mu(x)$, зависящие от точки $x$ из $G$. На бесконечности в каждом цилиндрическом выходе эти матрицы-функции сходятся с экспоненциальной скоростью к матрицам-функциям, не зависящим от продольной координаты цилиндра. Для соответствующей стационарной задачи со спектральным параметром определяются собственные функции непрерывного спектра и матрица рассеяния. Нестационарная система Максвелла расширяется до уравнения вида $i \partial_t \mathcal{U}(x,t)=\mathcal{A}(x,D_x)\mathcal{U}(x,t)$ с эллиптическим оператором $\mathcal{A}(x,D_x)$. С этим уравнением связывается начально-краевая задача, и для подходящей пары таких задач строится теория рассеяния. Вычисляются волновые операторы, определяется оператор рассеяния и описывается его связь с матрицей рассеяния. Из полученных результатов извлекаются сведения об исходной системе Максвелла. Библиография: 39 наименований.
AB - Волновод занимает трехмерную область $G$ с несколькими цилиндрическими выходами на бесконечность и описывается нестационарной системой Максвелла с идеально проводящими краевыми условиями. Предполагается, что диэлектрическая и магнитная проницаемости заполняющей среды - положительно определенные матрицы $\varepsilon(x)$ и $\mu(x)$, зависящие от точки $x$ из $G$. На бесконечности в каждом цилиндрическом выходе эти матрицы-функции сходятся с экспоненциальной скоростью к матрицам-функциям, не зависящим от продольной координаты цилиндра. Для соответствующей стационарной задачи со спектральным параметром определяются собственные функции непрерывного спектра и матрица рассеяния. Нестационарная система Максвелла расширяется до уравнения вида $i \partial_t \mathcal{U}(x,t)=\mathcal{A}(x,D_x)\mathcal{U}(x,t)$ с эллиптическим оператором $\mathcal{A}(x,D_x)$. С этим уравнением связывается начально-краевая задача, и для подходящей пары таких задач строится теория рассеяния. Вычисляются волновые операторы, определяется оператор рассеяния и описывается его связь с матрицей рассеяния. Из полученных результатов извлекаются сведения об исходной системе Максвелла. Библиография: 39 наименований.
UR - https://www.mendeley.com/catalogue/6ddf734d-e1e7-3239-8392-a9abbece2f28/
U2 - 10.4213/im9498
DO - 10.4213/im9498
M3 - статья
VL - 89
SP - 54
EP - 114
JO - ИЗВЕСТИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК. СЕРИЯ МАТЕМАТИЧЕСКАЯ
JF - ИЗВЕСТИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК. СЕРИЯ МАТЕМАТИЧЕСКАЯ
SN - 1607-0046
IS - 1
ER -
ID: 131128882