Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
ОБ ОДНОЙ ЗАДАЧЕ О НАГРЕВЕ ПРОВОДНИКА. / Pavlenko, V. N.; Potapov, D. K.
в: Челябинский физико-математический журнал, Том 6, № 3, 2021, стр. 299-311.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - ОБ ОДНОЙ ЗАДАЧЕ О НАГРЕВЕ ПРОВОДНИКА
AU - Pavlenko, V. N.
AU - Potapov, D. K.
N1 - Funding Information: The research was funded by RFBR and Chelyabinsk Region, project number 20-41-740003. Publisher Copyright: © 2021 The authors.
PY - 2021
Y1 - 2021
N2 - Kuiper’s problem on conductor heating in a uniform electric field of intensity √λ with a positive parameter λ is considered. The conductor temperature distribution is a solution to the Dirichlet problem with homogeneous initial data in a bounded domain for a quasilinear elliptic equation with a discontinuous nonlinearity and a parameter. The heat-conductivity coefficient depends on the spatial variable and temperature, and the specific electric conductivity has discontinuities with respect to the phase variable. The existence of a continuum of generalized positive solutions that connects (0, 0) to ∞ is proved by a topological method. A sufficient condition is obtained for such solutions to be semiregular. Compared to the papers of H.J. Kuiper and K.C. Chang, the restrictions on the discontinuous nonlinearity (the specific electric conductivity) are weaken.
AB - Kuiper’s problem on conductor heating in a uniform electric field of intensity √λ with a positive parameter λ is considered. The conductor temperature distribution is a solution to the Dirichlet problem with homogeneous initial data in a bounded domain for a quasilinear elliptic equation with a discontinuous nonlinearity and a parameter. The heat-conductivity coefficient depends on the spatial variable and temperature, and the specific electric conductivity has discontinuities with respect to the phase variable. The existence of a continuum of generalized positive solutions that connects (0, 0) to ∞ is proved by a topological method. A sufficient condition is obtained for such solutions to be semiregular. Compared to the papers of H.J. Kuiper and K.C. Chang, the restrictions on the discontinuous nonlinearity (the specific electric conductivity) are weaken.
KW - conductor heating
KW - continuum of positive solutions
KW - discontinuous nonlinearity
KW - Kuiper’s problem
KW - quasilinear elliptic equation
KW - semiregular solution
KW - topological method
UR - http://www.scopus.com/inward/record.url?scp=85128126228&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/6d0688e4-f80c-3131-8db9-273acc9527ac/
U2 - 10.47475/2500-0101-2021-16304
DO - 10.47475/2500-0101-2021-16304
M3 - статья
AN - SCOPUS:85128126228
VL - 6
SP - 299
EP - 311
JO - Chelyabinsk Physical and Mathematical Journal
JF - Chelyabinsk Physical and Mathematical Journal
SN - 2500-0101
IS - 3
ER -
ID: 87446419