Standard

Поиск оптимального маршрута в трехмерном пространстве. / Аббасов, Меджид Эльхан оглы; Лаврухин, Михаил Юрьевич; Горбунова, Анна Андреевна.

в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том 21, № 3, 15.10.2025, стр. 318-328.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Аббасов, МЭО, Лаврухин, МЮ & Горбунова, АА 2025, 'Поиск оптимального маршрута в трехмерном пространстве', ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, Том. 21, № 3, стр. 318-328. https://doi.org/10.21638/spbu10.2025.301

APA

Аббасов, М. Э. О., Лаврухин, М. Ю., & Горбунова, А. А. (2025). Поиск оптимального маршрута в трехмерном пространстве. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ, 21(3), 318-328. https://doi.org/10.21638/spbu10.2025.301

Vancouver

Аббасов МЭО, Лаврухин МЮ, Горбунова АА. Поиск оптимального маршрута в трехмерном пространстве. ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2025 Окт. 15;21(3):318-328. https://doi.org/10.21638/spbu10.2025.301

Author

Аббасов, Меджид Эльхан оглы ; Лаврухин, Михаил Юрьевич ; Горбунова, Анна Андреевна. / Поиск оптимального маршрута в трехмерном пространстве. в: ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ. 2025 ; Том 21, № 3. стр. 318-328.

BibTeX

@article{894b27a9d60e4f62ae77be1c8092ed32,
title = "Поиск оптимального маршрута в трехмерном пространстве",
abstract = "This paper investigates, for the first time, a three-dimensional mathematical model for constructing an optimal trajectory that had previously been studied only in the two-dimensional setting. An integral cost functional of the trajectory is formulated and a necessary condition for its minimum is derived. The resulting integro-differential equation is solved by the Galerkin and collocation methods. A genetic algorithm is also proposed. Classical methods based on necessary extremum conditions are well suited for finding local optima in smooth problems, whereas the genetic algorithm is advantageous when exact methods are unavailable: it can escape local extrema and often produces solutions close to the global optimum. Results of numerical experiments are presented, and future research directions aimed at improving numerical schemes and developing hybrid approaches are outlined.",
keywords = "Galerkin method, collocation method, genetic algorithm, mathematical modelling, optimal trajectory, projection methods",
author = "Аббасов, {Меджид Эльхан оглы} and Лаврухин, {Михаил Юрьевич} and Горбунова, {Анна Андреевна}",
year = "2025",
month = oct,
day = "15",
doi = "10.21638/spbu10.2025.301",
language = "русский",
volume = "21",
pages = "318--328",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "3",

}

RIS

TY - JOUR

T1 - Поиск оптимального маршрута в трехмерном пространстве

AU - Аббасов, Меджид Эльхан оглы

AU - Лаврухин, Михаил Юрьевич

AU - Горбунова, Анна Андреевна

PY - 2025/10/15

Y1 - 2025/10/15

N2 - This paper investigates, for the first time, a three-dimensional mathematical model for constructing an optimal trajectory that had previously been studied only in the two-dimensional setting. An integral cost functional of the trajectory is formulated and a necessary condition for its minimum is derived. The resulting integro-differential equation is solved by the Galerkin and collocation methods. A genetic algorithm is also proposed. Classical methods based on necessary extremum conditions are well suited for finding local optima in smooth problems, whereas the genetic algorithm is advantageous when exact methods are unavailable: it can escape local extrema and often produces solutions close to the global optimum. Results of numerical experiments are presented, and future research directions aimed at improving numerical schemes and developing hybrid approaches are outlined.

AB - This paper investigates, for the first time, a three-dimensional mathematical model for constructing an optimal trajectory that had previously been studied only in the two-dimensional setting. An integral cost functional of the trajectory is formulated and a necessary condition for its minimum is derived. The resulting integro-differential equation is solved by the Galerkin and collocation methods. A genetic algorithm is also proposed. Classical methods based on necessary extremum conditions are well suited for finding local optima in smooth problems, whereas the genetic algorithm is advantageous when exact methods are unavailable: it can escape local extrema and often produces solutions close to the global optimum. Results of numerical experiments are presented, and future research directions aimed at improving numerical schemes and developing hybrid approaches are outlined.

KW - Galerkin method

KW - collocation method

KW - genetic algorithm

KW - mathematical modelling

KW - optimal trajectory

KW - projection methods

UR - https://applmathjournal.spbu.ru/issue/view/1049

UR - https://www.mendeley.com/catalogue/d7318004-a373-3887-bd36-b199ebd75403/

U2 - 10.21638/spbu10.2025.301

DO - 10.21638/spbu10.2025.301

M3 - статья

VL - 21

SP - 318

EP - 328

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 3

ER -

ID: 142503709