Геометрические свойства пространств кеплеровских орбит представляют интерес для задач небесной механики, связанных с поиском групп небесных тел, орбиты которых близки между собой. К таким группам относятся семейства астероидов и метеорные потоки, изучение которых дает важные сведения об эволюции Солнечной системы, характеристиках объектов, составляющих семейство, и их родительских тел. Для задач поиска семейств родственных тел наиболее существенны локальные свойства функции расстояния между орбитами, поскольку орбиты членов семейства группируются в небольшой области пространства орбит. В настоящей статье мы рассматриваем несколько метрик на множестве кеплеровских орбит H и его фактормножествах. Для каждой из этих метрик решается вопрос о том, существует ли нормированное пространство, локально изометричное метрическому пространству орбит. В двух из рассмотренных случаев ответ оказывается положительным: факторпространство H по отношению эквивалентности, пренебрегающему величиной аргумента перицентра орбиты, изо