Геометрические свойства пространств кеплеровских орбит представляют интерес для задач небесной механики, связанных с поиском групп небесных тел, орбиты которых близки между собой. К таким группам относятся семейства астероидов и метеорные потоки, изучение которых дает важные сведения об эволюции Солнечной системы, характеристиках объектов, составляющих семейство, и их родительских тел. Для задач поиска семейств родственных тел наиболее существенны локальные свойства функции расстояния между орбитами, поскольку орбиты членов семейства группируются в небольшой области пространства орбит. В настоящей статье мы рассматриваем несколько метрик на множестве кеплеровских орбит H и его фактормножествах. Для каждой из этих метрик решается вопрос о том, существует ли нормированное пространство, локально изометричное метрическому пространству орбит. В двух из рассмотренных случаев ответ оказывается положительным: факторпространство H по отношению эквивалентности, пренебрегающему величиной аргумента перицентра орбиты, изо
Язык оригиналарусский
Страницы (с-по)505-518
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
Том6
Номер выпуска3
СостояниеОпубликовано - 2019
Опубликовано для внешнего пользованияДа

    Области исследований

  • Asteroid family, local isometry, mean orbit, meteor stream, Normability, Orbital similarity criterion, Space of Keplerian orbits, критерий близости орбит, локальная изометрия, метеорный поток, нормируемость, пространство кеплеровских орбит, семейство астероидов, средняя орбита

ID: 78458955