Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
In this work we construct a class of coanalytic Toeplitz operators, which have an infinitedimensional closed subspace, where any non-zero vector is hypercyclic. Namely, if for a function ϕ which is analytic in the open unit disc D and continuous in its closure the conditions ϕ(T)∩T ≠ ∅ and ϕ(D)∩T ≠ 0 are satisfied, then the operator ϕ(S*) (where S* is the backward shift operator in the Hardy space) has the required property. The proof is based on an application of a theorem by Gonzalez, Leon-Saavedra and Montes-Rodriguez.
Язык оригинала | русский |
---|---|
Страницы (с-по) | 102-105 |
Число страниц | 4 |
Журнал | Ufa Mathematical Journal |
Том | 7 |
Номер выпуска | 2 |
DOI | |
Состояние | Опубликовано - 1 янв 2015 |
ID: 35962540