DOI

Одной из основных задач математической диагностики является строгое отделение двух конечных множеств в евклидовом пространстве. Широко известно строгое линейное отделение, которое сводится к решению задачи линейного программирования. Мы вводим понятие строгого полиномиального отделения и показываем, что строгое полиномиальное отделение двух множеств также сводится к решению задачи линейного программирования. Целевая функция предложенной в статье задачи линейного программирования имеет следующую особенность: ее оптимальное значение может равняться только нулю или единице — нулю, если множества допускают строгое полиномиальное отделение, и единице в противном случае. Приведены наглядные примеры строгого отделения двух множеств на плоскости с помощью алгебраических полиномов четвертой степени от двух переменных. Анализируется эффективность применения строгого полиномиального отделения при решении задач бинарной классификации данных.
Переведенное названиеStrict polynomial separation of two sets
Язык оригиналарусский
Страницы (с-по)232-240
ЖурналВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. МАТЕМАТИКА. МЕХАНИКА. АСТРОНОМИЯ
Том6(64)
Номер выпуска2
DOI
СостояниеОпубликовано - 2019

    Предметные области Scopus

  • Математика (все)

    Области исследований

  • строгое линейное отделение, строгое полиномиальное отделение, линейное программирование, математическая диагностика

ID: 43117327