DOI

A class of quasilinear parabolic systems with nondiagonal principal matrix and strongly nonlinear additional terms is considered. The elliptic operator of the system has a variational structure and is generated by a quadratic functional with a nondiagonal matrix. A plane domain of the spatial variables is divided by a smooth curve in two subdomains and the principal matrix of the system has a "jump" when crossing this curve. The two-phase conditions are given on this curve and the Cauchy-Dirichlet conditions hold at the parabolic boundary of the main parabolic cylinder. The existence of a weak Hölder continuous global solution of the two-phase problem is proved. The problem can be regarded as a construction of the heat flow from a given vector-function to an extremal of the functional.

Original languageEnglish
Pages (from-to)273-296
Number of pages24
JournalSt. Petersburg Mathematical Journal
Volume31
Issue number2
DOIs
StatePublished - 2020

    Research areas

  • Global solvability, Parabolic systems, Sstrong nonlinearity

    Scopus subject areas

  • Analysis
  • Algebra and Number Theory
  • Applied Mathematics

ID: 78033062