Abstract: In this paper, a semi-infinite Kirchhoff plate with a traction-free edge, which rests partially on a heterogeneous Winkler foundation (the Neumann problem for the biharmonic operator perturbed by a small free term with a compact support), is considered. It is shown that, for arbitrary small ε > 0, a variable foundation compliance coefficient (defined nonuniquely) of order ε can be constructed, such that the plate obtains the eigenvalue ε4 that is embedded into a continuous spectrum, and the corresponding eigenfunction decays exponentially at infinity. It is verified that no more than one small eigenvalue can exist. It is noteworthy that a small perturbation cannot prompt an emergence of an eigenvalue near the cutoff point of the continuous spectrum in an acoustic waveguide (the Neumann problem for the Laplace operator).
Original language | English |
---|---|
Pages (from-to) | 1328-1339 |
Number of pages | 12 |
Journal | Mechanics of Solids |
Volume | 55 |
Issue number | 8 |
DOIs | |
State | Published - Dec 2020 |
ID: 88366220