Standard

Wavelet characterization of growth spaces of harmonic functions. / Eikrem, Kjersti Solberg; Malinnikova, Eugenia; Mozolyako, Pavel A.

In: Journal d'Analyse Mathematique, Vol. 122, No. 1, 01.01.2014, p. 87-111.

Research output: Contribution to journalArticlepeer-review

Harvard

Eikrem, KS, Malinnikova, E & Mozolyako, PA 2014, 'Wavelet characterization of growth spaces of harmonic functions', Journal d'Analyse Mathematique, vol. 122, no. 1, pp. 87-111. https://doi.org/10.1007/s11854-014-0004-y

APA

Eikrem, K. S., Malinnikova, E., & Mozolyako, P. A. (2014). Wavelet characterization of growth spaces of harmonic functions. Journal d'Analyse Mathematique, 122(1), 87-111. https://doi.org/10.1007/s11854-014-0004-y

Vancouver

Eikrem KS, Malinnikova E, Mozolyako PA. Wavelet characterization of growth spaces of harmonic functions. Journal d'Analyse Mathematique. 2014 Jan 1;122(1):87-111. https://doi.org/10.1007/s11854-014-0004-y

Author

Eikrem, Kjersti Solberg ; Malinnikova, Eugenia ; Mozolyako, Pavel A. / Wavelet characterization of growth spaces of harmonic functions. In: Journal d'Analyse Mathematique. 2014 ; Vol. 122, No. 1. pp. 87-111.

BibTeX

@article{86d1e4a220f248cd8b28444522e5097e,
title = "Wavelet characterization of growth spaces of harmonic functions",
abstract = "We consider the space hν∞ of harmonic functions in R+n+1 with finite norm {norm of matrix}u{norm of matrix}ν = sup {pipe}u(x, t){pipe}/v(t), where the weight ν satisfies the doubling condition. Boundary values of functions in hν∞ are characterized in terms of their smooth multiresolution approximations. The characterization yields the isomorphism of Banach spaces hν∞ ∼ l∞. The results are also applied to obtain the law of the iterated logarithm for the oscillation of functions in hν∞ along vertical lines. {\textcopyright} 2014 Hebrew University Magnes Press.",
author = "Eikrem, {Kjersti Solberg} and Eugenia Malinnikova and Mozolyako, {Pavel A.}",
year = "2014",
month = jan,
day = "1",
doi = "10.1007/s11854-014-0004-y",
language = "English",
volume = "122",
pages = "87--111",
journal = "Journal d'Analyse Mathematique",
issn = "0021-7670",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Wavelet characterization of growth spaces of harmonic functions

AU - Eikrem, Kjersti Solberg

AU - Malinnikova, Eugenia

AU - Mozolyako, Pavel A.

PY - 2014/1/1

Y1 - 2014/1/1

N2 - We consider the space hν∞ of harmonic functions in R+n+1 with finite norm {norm of matrix}u{norm of matrix}ν = sup {pipe}u(x, t){pipe}/v(t), where the weight ν satisfies the doubling condition. Boundary values of functions in hν∞ are characterized in terms of their smooth multiresolution approximations. The characterization yields the isomorphism of Banach spaces hν∞ ∼ l∞. The results are also applied to obtain the law of the iterated logarithm for the oscillation of functions in hν∞ along vertical lines. © 2014 Hebrew University Magnes Press.

AB - We consider the space hν∞ of harmonic functions in R+n+1 with finite norm {norm of matrix}u{norm of matrix}ν = sup {pipe}u(x, t){pipe}/v(t), where the weight ν satisfies the doubling condition. Boundary values of functions in hν∞ are characterized in terms of their smooth multiresolution approximations. The characterization yields the isomorphism of Banach spaces hν∞ ∼ l∞. The results are also applied to obtain the law of the iterated logarithm for the oscillation of functions in hν∞ along vertical lines. © 2014 Hebrew University Magnes Press.

UR - http://www.scopus.com/inward/record.url?scp=84897445744&partnerID=8YFLogxK

U2 - 10.1007/s11854-014-0004-y

DO - 10.1007/s11854-014-0004-y

M3 - Article

AN - SCOPUS:84897445744

VL - 122

SP - 87

EP - 111

JO - Journal d'Analyse Mathematique

JF - Journal d'Analyse Mathematique

SN - 0021-7670

IS - 1

ER -

ID: 119109520