Standard

Venttsel boundary value problems with discontinuous data. / Apushkinskaya, Darya E.; Nazarov, Alexander I.; Palagachev, Dian K.; Softova, Lubomira G.

In: SIAM Journal on Mathematical Analysis, Vol. 53, No. 1, 2021, p. 221-252.

Research output: Contribution to journalArticlepeer-review

Harvard

Apushkinskaya, DE, Nazarov, AI, Palagachev, DK & Softova, LG 2021, 'Venttsel boundary value problems with discontinuous data', SIAM Journal on Mathematical Analysis, vol. 53, no. 1, pp. 221-252. https://doi.org/10.1137/19M1286839

APA

Apushkinskaya, D. E., Nazarov, A. I., Palagachev, D. K., & Softova, L. G. (2021). Venttsel boundary value problems with discontinuous data. SIAM Journal on Mathematical Analysis, 53(1), 221-252. https://doi.org/10.1137/19M1286839

Vancouver

Apushkinskaya DE, Nazarov AI, Palagachev DK, Softova LG. Venttsel boundary value problems with discontinuous data. SIAM Journal on Mathematical Analysis. 2021;53(1):221-252. https://doi.org/10.1137/19M1286839

Author

Apushkinskaya, Darya E. ; Nazarov, Alexander I. ; Palagachev, Dian K. ; Softova, Lubomira G. / Venttsel boundary value problems with discontinuous data. In: SIAM Journal on Mathematical Analysis. 2021 ; Vol. 53, No. 1. pp. 221-252.

BibTeX

@article{c82095a265d24fb0ad741df5e7b653cf,
title = "Venttsel boundary value problems with discontinuous data",
abstract = "We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the basis of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.",
keywords = "A priori estimates, Maximal regularity, Quasilinear, Second-order elliptic equations, Strong solvability, Venttsel problem, VMO",
author = "Apushkinskaya, {Darya E.} and Nazarov, {Alexander I.} and Palagachev, {Dian K.} and Softova, {Lubomira G.}",
note = "Publisher Copyright: {\textcopyright} 2021 Society for Industrial and Applied Mathematics.",
year = "2021",
doi = "10.1137/19M1286839",
language = "English",
volume = "53",
pages = "221--252",
journal = "SIAM Journal on Mathematical Analysis",
issn = "0036-1410",
publisher = "Society for Industrial and Applied Mathematics",
number = "1",

}

RIS

TY - JOUR

T1 - Venttsel boundary value problems with discontinuous data

AU - Apushkinskaya, Darya E.

AU - Nazarov, Alexander I.

AU - Palagachev, Dian K.

AU - Softova, Lubomira G.

N1 - Publisher Copyright: © 2021 Society for Industrial and Applied Mathematics.

PY - 2021

Y1 - 2021

N2 - We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the basis of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.

AB - We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the basis of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.

KW - A priori estimates

KW - Maximal regularity

KW - Quasilinear

KW - Second-order elliptic equations

KW - Strong solvability

KW - Venttsel problem

KW - VMO

UR - http://www.scopus.com/inward/record.url?scp=85103225647&partnerID=8YFLogxK

U2 - 10.1137/19M1286839

DO - 10.1137/19M1286839

M3 - Article

AN - SCOPUS:85103225647

VL - 53

SP - 221

EP - 252

JO - SIAM Journal on Mathematical Analysis

JF - SIAM Journal on Mathematical Analysis

SN - 0036-1410

IS - 1

ER -

ID: 83988590