Standard

Variational integrals on Orlicz-Sobolev spaces. / Fuchs, M.; Osmolovski, V.

In: Zeitschrift fur Analysis und ihre Anwendung, Vol. 17, No. 2, 01.01.1998, p. 393-415.

Research output: Contribution to journalArticlepeer-review

Harvard

Fuchs, M & Osmolovski, V 1998, 'Variational integrals on Orlicz-Sobolev spaces', Zeitschrift fur Analysis und ihre Anwendung, vol. 17, no. 2, pp. 393-415. https://doi.org/10.4171/ZAA/829

APA

Fuchs, M., & Osmolovski, V. (1998). Variational integrals on Orlicz-Sobolev spaces. Zeitschrift fur Analysis und ihre Anwendung, 17(2), 393-415. https://doi.org/10.4171/ZAA/829

Vancouver

Fuchs M, Osmolovski V. Variational integrals on Orlicz-Sobolev spaces. Zeitschrift fur Analysis und ihre Anwendung. 1998 Jan 1;17(2):393-415. https://doi.org/10.4171/ZAA/829

Author

Fuchs, M. ; Osmolovski, V. / Variational integrals on Orlicz-Sobolev spaces. In: Zeitschrift fur Analysis und ihre Anwendung. 1998 ; Vol. 17, No. 2. pp. 393-415.

BibTeX

@article{26c3f990c18d495eaff9a5ae11b12a62,
title = "Variational integrals on Orlicz-Sobolev spaces",
abstract = "We consider vector functions u : ℝn ⊃ Ω → ℝN minimizing variational integrals of the form ∫Ω G(∇u) dx with convex density G whose growth properties are described in terms of an N-function A : [0,∞) →[0,∞) with lim supt→∞ A(t)t-2 < ∞. We then prove - under certain technical assumptions on G - full regularity of u provided that n = 2, and partial C1-regularity in the case n ≥ 3. The main feature of the paper is that we do not require any power growth of G.",
keywords = "Minima, Orlicz-Sobolev spaces, Regularity theory, Variational problems",
author = "M. Fuchs and V. Osmolovski",
year = "1998",
month = jan,
day = "1",
doi = "10.4171/ZAA/829",
language = "English",
volume = "17",
pages = "393--415",
journal = "Zeitschrift f{\"u}r Analysis und ihre Anwendungen",
issn = "0232-2064",
publisher = "Heldermann Verlag",
number = "2",

}

RIS

TY - JOUR

T1 - Variational integrals on Orlicz-Sobolev spaces

AU - Fuchs, M.

AU - Osmolovski, V.

PY - 1998/1/1

Y1 - 1998/1/1

N2 - We consider vector functions u : ℝn ⊃ Ω → ℝN minimizing variational integrals of the form ∫Ω G(∇u) dx with convex density G whose growth properties are described in terms of an N-function A : [0,∞) →[0,∞) with lim supt→∞ A(t)t-2 < ∞. We then prove - under certain technical assumptions on G - full regularity of u provided that n = 2, and partial C1-regularity in the case n ≥ 3. The main feature of the paper is that we do not require any power growth of G.

AB - We consider vector functions u : ℝn ⊃ Ω → ℝN minimizing variational integrals of the form ∫Ω G(∇u) dx with convex density G whose growth properties are described in terms of an N-function A : [0,∞) →[0,∞) with lim supt→∞ A(t)t-2 < ∞. We then prove - under certain technical assumptions on G - full regularity of u provided that n = 2, and partial C1-regularity in the case n ≥ 3. The main feature of the paper is that we do not require any power growth of G.

KW - Minima

KW - Orlicz-Sobolev spaces

KW - Regularity theory

KW - Variational problems

UR - http://www.scopus.com/inward/record.url?scp=22044431678&partnerID=8YFLogxK

U2 - 10.4171/ZAA/829

DO - 10.4171/ZAA/829

M3 - Article

AN - SCOPUS:22044431678

VL - 17

SP - 393

EP - 415

JO - Zeitschrift für Analysis und ihre Anwendungen

JF - Zeitschrift für Analysis und ihre Anwendungen

SN - 0232-2064

IS - 2

ER -

ID: 39408980