Standard

Unrelativized Standard Commutator Formula. / Vavilov, N. A.

In: Journal of Mathematical Sciences (United States), Vol. 243, No. 4, 01.12.2019, p. 527-534.

Research output: Contribution to journalArticlepeer-review

Harvard

Vavilov, NA 2019, 'Unrelativized Standard Commutator Formula', Journal of Mathematical Sciences (United States), vol. 243, no. 4, pp. 527-534. https://doi.org/10.1007/s10958-019-04554-w

APA

Vavilov, N. A. (2019). Unrelativized Standard Commutator Formula. Journal of Mathematical Sciences (United States), 243(4), 527-534. https://doi.org/10.1007/s10958-019-04554-w

Vancouver

Vavilov NA. Unrelativized Standard Commutator Formula. Journal of Mathematical Sciences (United States). 2019 Dec 1;243(4):527-534. https://doi.org/10.1007/s10958-019-04554-w

Author

Vavilov, N. A. / Unrelativized Standard Commutator Formula. In: Journal of Mathematical Sciences (United States). 2019 ; Vol. 243, No. 4. pp. 527-534.

BibTeX

@article{0105a4689ce049eea06b9b658a88639a,
title = "Unrelativized Standard Commutator Formula",
abstract = "In the present note, which is a marginalia to the previous papers by Roozbeh Hazrat, Alexei Stepanov, Zuhong Zhang, and the author, I observe that for any ideals A,B≤R of a commutative ring R and all n ≥ 3 the birelative standard commutator formula also holds in the unrelativized form, as [E(n,A),GL(n,B)] = [E(n,A),E(n,B)] and discuss some obvious corollaries thereof.",
keywords = "полная линейная группа, элементарные подгруппы, конгруэнц-подгруппы, стандартная коммутационная формула, разложение унипотентов, теорема Суслина",
author = "Vavilov, {N. A.}",
year = "2019",
month = dec,
day = "1",
doi = "10.1007/s10958-019-04554-w",
language = "English",
volume = "243",
pages = "527--534",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Unrelativized Standard Commutator Formula

AU - Vavilov, N. A.

PY - 2019/12/1

Y1 - 2019/12/1

N2 - In the present note, which is a marginalia to the previous papers by Roozbeh Hazrat, Alexei Stepanov, Zuhong Zhang, and the author, I observe that for any ideals A,B≤R of a commutative ring R and all n ≥ 3 the birelative standard commutator formula also holds in the unrelativized form, as [E(n,A),GL(n,B)] = [E(n,A),E(n,B)] and discuss some obvious corollaries thereof.

AB - In the present note, which is a marginalia to the previous papers by Roozbeh Hazrat, Alexei Stepanov, Zuhong Zhang, and the author, I observe that for any ideals A,B≤R of a commutative ring R and all n ≥ 3 the birelative standard commutator formula also holds in the unrelativized form, as [E(n,A),GL(n,B)] = [E(n,A),E(n,B)] and discuss some obvious corollaries thereof.

KW - полная линейная группа

KW - элементарные подгруппы

KW - конгруэнц-подгруппы

KW - стандартная коммутационная формула

KW - разложение унипотентов

KW - теорема Суслина

UR - http://www.scopus.com/inward/record.url?scp=85074852524&partnerID=8YFLogxK

U2 - 10.1007/s10958-019-04554-w

DO - 10.1007/s10958-019-04554-w

M3 - Article

AN - SCOPUS:85074852524

VL - 243

SP - 527

EP - 534

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 51599542